Attachment 9 - Preliminary Contaminated Site Assessment

Report Stage 2 Detailed Contamination Assessment Proposed Rezoning to Rural Residential, 510 Beach Road, Berry

Prepared for:

Richard and Enid Hall

26 Abercrombie Crescent ALBION PARK NSW 2527

Prepared by:

Network Geotechnics

27 February 2018

Ref: G09/2571-Ar

Network Geotechnics Pty Ltd

Mt Kuring-Gai

12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 T: +61 2 8438 0300 F: +61 2 8438 0310

Wollongong

1/140 Industrial Road Oak Flats NSW 2529 T: +61 2 4257 4458 F: +61 2 4257 4463 E: admin@netgeo.com.au W: www.netgeo.com.au ABN: 35 069 211 561

Document Status

Rev				Approved for Issue		
No.	Version	Author	Reviewer	Name	Signature	Date
0	Final	T Park-Ross	M Williams	M Williams	MIL	12.10.17
1	Final	T Park-Ross	M Williams	M Williams	MIL	27.2.17

Document Distribution

Rev No.	Copies	Format	Issued to	Date
0	1	Electronic	Richard and Enid Hall	12.10.17
1	1	Electronic	Richard and Enid Hall	27.2.18

Document copyright of Network Geotechnics Pty Ltd.

The contents of this document are and remain the intellectual property of Network Geotechnics Pty Ltd (NG). This document should only be used for the purpose for which it was commissioned and should not be used for other projects or by a third party without written consent from NG.

Document delivery

NG provides this document in either printed format, electronic format or both. The electronic format is provided for the client's convenience and NG requests that the client ensures the integrity of this electronic information is maintained.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by NG and a copy will be provided if requested.

Table of Contents

Executive Summary1	
1.0 Introduction	
2.0 Scope of Work	
3.0 Site Identification	
4.0 Site History	;
4.1 Zoning	;
4.2 Land Use	,
4.3 Adjacent Land 3	;
5.0 Site Condition and Surrounding Environment	;
5.1 Topography and Drainage3	;
5.2 Site Observations	,
5.3 Sensitive Environments4	r
5.4 Preliminary Areas of Environmental Concern4	r
6.0 Geology & Hydrology	r
6.1 Geology	r
6.2 Hydrology5	,
7.0 Sampling, Analysis Plan & Sampling Methodology5	,
7.1 Sampling & Analysis Plan5	į
7.2 Sampling Methodology7	'
8.0 Quality Assurance & Quality Control	,
8.1 Field Quality Assurance & Quality control7	,
8.2 Laboratory Quality Assurance & Quality Control9)
9.0 Assessment Criteria)
9.1 Soil)
9.2 Water	;
10.0 Results & Discussion	į
10.1 Visual Assessment15	į
10.2 Analytical Test Results – Soil15)
10.2.1 Metals	,
10.2.2 Polynuclear Aromatic Hydrocarbon15)
10.2.3 Total Recoverable Hydrocarbons & BTEX15)
10.2.4 OC/OP Pesticides15	,
10.2.5 Asbestos)
10.3 Analytical Test Results – Dam Water16	j
10.3.1 Metals	j
10.3.2 TRH/BTEX/PAH	j
10.3.3 OC/OP Pesticides	i
11.0 Site Characterisation	j
12.0 Conclusions	
13.0 References	

Appendices

- Appendix A:Information SheetsAppendix B:Site Plan
- Appendix C: Borehole Logs
- Appendix D: Summary of Laboratory Test Results

Executive Summary

Richard and Enid Hall commissioned Network Geotechnics Pty Ltd (NG) to carry out a Stage 2 Contamination Assessment in accordance with Contamination Land Management Act as part of a rezoning application to permit rural residential development at 510 Beach Road, Berry.

A Stage 1 Contamination Assessment was completed by Strategic Environmental Engineering Consulting (SEEC) in July 2015 (Reference: 15000106-CA-01). The report identified the site as being used for dairy farming and then grazing of beef cattle. Some isolated areas were identified as requiring further investigation including an aboveground storage tank (AST) and underground storage tank (UST) used for storing fuel, areas around the house and machinery sheds.

The objective of this investigation was to carry out a Stage 2 Contamination Assessment in order to assess the risk of site contamination and the suitability of the site for the proposed rezoning.

The scope of work undertaken to achieve the objectives included:

- Design and implementation of a field sampling and laboratory testing program.
- Drilling of 30 boreholes across the site.
- Collection of soil samples at regular depth intervals.
- Analysis of soil and dam water samples for contaminants of concern.
- Preparation of a Stage 2 Contamination Assessment report which includes recommendations for remediation.

Based on the results of this investigation, it is evident that there are some areas of contamination at the subject site. These areas of environmental concern (AECs) are as follows:

- AEC 1: Soils near UST/AST. Sample BH7 0.4-0.5 and BH7 0.9-1.0 contains concentrations of TRH C16 to C34 (F3) greater than the ESL for fine grained soils. Sample BH7 0-0.1 contains concentrations of zinc exceeding the EIL.
- AEC 2: Stained surface soils adjacent to the machinery shed. Soils have hydrocarbon staining and odour and are assessed to be aesthetically impacted.
- AEC 3: Area of burnt material. Sample BH13 contains concentrations of zinc greater than the EIL and lead greater than the HIL.

It is recommended that a Remediation Action Plan (RAP) be prepared which details remediation options and goals and the actions which must be carried out in order to meet these goals and validation procedures. In addition it is recommended that an environmental consultant be present during demolition and further testing be carried out after the removal of sheds, dwellings and driveway areas for any residual contamination.

It is assessed that the site can be remediated in order to be made suitable for the proposed rezoning to rural residential land use.

1.0 Introduction

Richard and Enid Hall commissioned Network Geotechnics Pty Ltd (NG) to carry out a Stage 2 Contamination Assessment in accordance with Contamination Land Management Act in order to lodge a Development Application to rezone the land to permit rural residential development at 510 Beach Road, Berry.

A Stage 1 Contamination Assessment was completed by Strategic Environmental Engineering Consulting (SEEC) in July 2015 (Reference: 15000106-CA-01). The report identified the site as being used for dairy farming and then grazing of beef cattle. Some isolated areas were identified as requiring further investigation including an aboveground storage tank (AST) and underground storage tank (UST) used for storing fuel, areas around the house and machinery sheds.

2.0 Scope of Work

The objective of this investigation was to carry out a Stage 2 Contamination Assessment in order to assess the risk of site contamination and the suitability of the site for the proposed rezoning.

The scope of work undertaken to achieve the objectives included:

- Design and implementation of a field sampling and laboratory testing program.
- Drilling of 30 boreholes across the site.
- Collection of soil samples at regular depth intervals.
- Analysis of soil and dam water samples for heavy metals (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg), Total Recoverable Hydrocarbon, Benzene Toluene, Ethyl Benzene and Xylene and Polynuclear Aromatic Hydrocarbon (TRH/BTEX/PAH), Organochlorine and Organophosphate Pesticides (OC/OP) and asbestos presence
- Preparation of a Stage 2 Contamination Assessment report which includes recommendations for remediation.

3.0 Site Identification

The site is located to the south of Beach Road and is identified as 510 Beach Road, Berry (Lot 4 DP 834254). The site is bounded by:

- Rural residential properties to the east and west;
- Beach Road with rural properties to the north;
- Coomonderry Swamp to the south.

It is understood that the rear section of the lot is to be zoned for environmental conservation and is therefore not part of this investigation. The subject site covers a total area of approximately 56.4 hectares and is located in the Shoalhaven City Council area.

A plan of the site is included in Drawing No. G09/2571-1 in Appendix B.

4.0 Site History

4.1 Zoning

The site is currently zoned RU1 Primary Production and a section at the rear is zoned E2 Environmental Conservation. It is understood that the proposal involves rezoning the RU1 part of the site to R5 Large Lot Residential and the E2 part of the site to E1 National Parks and Nature Reserves.

4.2 Land Use

The Stage 1 report identified historical land use to include dairy farming up until approximately 1989. Since then the site has been used for cattle grazing. The site has also been used for residential purposes since the 1970s.

4.3 Adjacent Land

The Stage 1 report identified neighbouring sites to have been used for agricultural purposes up until the early 2000s when the sites to the east and west were rezoned for use as rural residential. The site to the north is part of a sand quarry. Based on these uses it is assessed that there is a low risk of contamination migration from neighbouring sites.

5.0 Site Condition and Surrounding Environment

5.1 Topography and Drainage

An east-west ridge runs through the site. The front portion of the site slopes to the north to north-east and the rear portion of the site slopes to the south-west.

Surface water runoff from the rear portion of the site would flow into Coomonderry Swamp – a SEPP14 Wetland. Runoff from the front portion of the site would flow into the two on-site dams and then into a culvert which flows under Beach Road into a dam on the adjacent property to the north.

5.2 Site Observations

A site inspection was carried out by a NG Environmental Scientist during fieldwork on 11 and 12 September 2017.

A gravel driveway was observed to lead to a brick, fibro and tile residence and a separate metal garage on concrete slab. To the east of the residence a pile of burnt timber and metal was observed.

Behind the garage, two metal sheds on concrete slabs were observed. The western shed was observed to be used for storing machinery and containers of oils. Oil staining was observed on the concrete and on the ground surface in front of the shed.

In front of the machinery sheds an AST was observed. Beneath the AST a fill point for a UST was observed. The two tanks are understood to have contained either diesel or petrol but are no longer in use.

Behind the machinery sheds the disused dairy building was observed to be constructed of bricks and metal on concrete slab. Some paint was observed to be peeling from the building. The holding yard in front of the dairy was on bare ground.

A metal shed on ground was observed to the east of the dairy. It was observed that the shed is used for storing hay bales.

Two dams were observed further to the east. A disused dam which had become silted up over time was observed in the north-western corner of the site and another in the south-eastern corner of the site. An area of excavation was observed near the northern boundary.

A site plan is attached in Appendix B.

5.3 Sensitive Environments

The rear section of the site is occupied by the Coomonderry Swamp which is a SEPP14 wetland. Surface water runoff from the southern portion of the site would flow into the swamp.

5.4 Preliminary Areas of Environmental Concern

Based on the findings of the Stage 1 report and NGs investigation the following areas of environmental concern (AECs) have been identified:

- The area surrounding and downslope of the AST and UST. Soils may be contaminated with TRH/BTEX/PAH and lead as a results of leaks or spillage from the tanks.
- The footprint of the homestead. This area is likely to have been treated for white ants and so could have residual organochlorine pesticides in the near-surface soil.
- The soils beneath and immediately outside the machinery sheds. These areas could be contaminated by fuel, oil or chemical spills from within the sheds. Contaminants of concern include TRH/BTEX/PAH, heavy metals and OC/OP pesticides.
- Areas which are visually assessed to have been filled including the gravel driveway and dam walls. Contaminants of concern include TRH/BTEX/PAH, heavy metals, OC/OP pesticides and asbestos.

6.0 Geology & Hydrology

6.1 Geology

Reference to the 1:250,000 Wollongong Series geological map indicates the front portion of the site is underlain by Quartenary Alluvium which consists of alluvium, gravel, swamp deposits and sand dunes and the rear of the site is underlain by Shoalhaven Group Berry Formation which consists of siltstone, shale and sandstone.

Subsurface conditions encountered in boreholes may be generalised as follows:

Table 3	Generalised Subsurface Lithology Encountered for BH4 to BH10, BH12,
	BH13, BH18 to BH30

Layer	Description	Depth to base of layer (m)
TOPSOIL	Silty CLAY, low plasticity, brown or grey brown	
		0.1 – 0.2
RESIDUAL	CLAY, medium to high plasticity, red brown or	
	orange or red mottled grey or grey mottled	
	orange, traces to some silt and gravel	
		0.35 - >1.5
ROCK	SHALE, extremely weathered, orange brown	
	(BH21, BH26, BH27 only)	
		0.5 – 1.0

Table 4Generalised Subsurface Lithology Encountered for BH1 to BH3, BH11,
BH14 to BH17

Layer	Description	Depth to base of laver (m)
FILL	Sandy GRAVEL, medium to coarse grained, grey	
	(BH1, BH2 and BH3 only)	0.5 - 1.0
FILL	Gravelly Silty CLAY, low to medium plasticity,	
	grey (BH11 only)	
		0.2
FILL	Silty CLAY, low to medium plasticity, brown or	
	grey mottled orange, traces of gravel (BH14,	
	BH15, BH16, BH17 only)	
		0.2 - 0.7
RESIDUAL	CLAY, medium to high plasticity, red brown or	
	orange or red mottled grey or grey mottled	
	orange, traces to some silt and gravel	
		>1.5

6.2 Hydrology

The NSW Office of Water groundwater map indicates that there is one groundwater bore within 1km of the subject site. The groundwater bore (GW) is approximately 300m from the eastern boundary of the site and used for domestic purposes. The standing water level is 16m below ground level.

7.0 Sampling, Analysis Plan & Sampling Methodology

7.1 Sampling & Analysis Plan

A combination of systematic and judgemental sampling plan was utilised. Areas identified to have a higher risk of contamination during the site walkover assessment and from historical aerial photos were targeted for sampling. These include dam walls, areas around the sheds and AST/UST and gravel driveways. The remainder of the sampling points were spread across the subject site.

Based on the site history and findings of the fieldwork carried out, potential contaminants of concern were considered to be heavy metals, hydrocarbons, pesticides, and asbestos.

The table below provides rationale for sampling and testing details.

	Table 5 Samples Tested	for Contaminants
Sample ID	Location	Analytes Tested
BH1 0-0.1	Gravel driveway in fill.	Heavy metals
BH2 0-0.1	Gravel driveway in fill.	TRH/BTEX/PAH, OC/OP Pesticides,
		Heavy metals
BH3 0-0.1	Gravel driveway in fill.	Heavy metals
BH4 0-0.1	Topsoil adjacent to the residence.	Heavy metals
BH5 0-0.1	Near AST/UST in topsoil.	TRH/BTEX/PAH, Heavy metals
BH5 0.9-1.0	Near AST/UST in residual.	TRH/BTEX/PAH, Heavy metals
BH5 1.4-1.5	Near AST/UST in residual.	TRH/BTEX/PAH, Heavy metals
BH6 0.4-0.5	Near AST/UST in residual.	TRH/BTEX/PAH, Heavy metals
BH6 1.4-1.5	Near AST/UST in residual.	TRH/BTEX/PAH, Heavy metals
BH7 0-0.1	Near AST/UST in topsoil.	TRH/BTEX/PAH, Heavy metals
BH7 0.4-0.5	Near AST/UST in residual.	TRH
BH7 0.9-1.0	Near AST/UST in residual.	TRH/BTEX/PAH, Heavy metals
BH7 1.4-1.5	Near AST/UST in residual.	TRH
BH8 0-0.1	Near machinery shed in topsoil.	TRH/BTEX/PAH, OC/OP Pesticides,
		Heavy metals
BH9 0-0.1	Near machinery shed in topsoil.	TRH/BTEX/PAH, Heavy metals
BH10 0-0.1	Adjacent to dairy shed in topsoil.	TRH/BTEX/PAH
BH11 0-0.1	In holding area in fill.	TRH/BTEX/PAH, OC/OP Pesticides,
		Heavy metals
BH13 0-0.1	Burnt area in fill.	TRH/BTEX/PAH, Heavy metals
BH14 0.4-0.5	Wall of Dam 1 in fill.	TRH/BTEX/PAH, Heavy metals
BH15 0-0.1	Wall of Dam 1 in fill.	OC/OP Pesticides, Heavy metals
BH16 0.4-0.5	Wall of Dam 1 in fill.	TRH/BTEX/PAH, Heavy metals
BH17 0.4-0.5	Wall of Dam 1 in fill.	OC/OP Pesticides, Heavy metals
BH19 0-0.1	Grazing paddock in topsoil.	OC/OP Pesticides, Heavy metals
BH20 0.9-1.0	Grazing paddock in residual.	TRH/BTEX/PAH, Heavy metals
BH22 0-0.1	Grazing paddock in topsoil.	Heavy metals
BH25 0.4-0.5	Grazing paddock in residual.	OC/OP Pesticides, Heavy metals
BH27 0-0.1	Grazing paddock in topsoil.	Heavy metals
BH29 0-0.1	Grazing paddock in topsoil.	OC/OP Pesticides, Heavy metals
BH30 0.9-1.0	Grazing paddock in residual.	TRH/BTEX/PAH, Heavy metals
BH130 0.9-1.0	Intra-laboratory duplicate in	TRH/BTEX/PAH, Heavy metals
	residual.	
BH120 0.9-1.0	Intra-laboratory duplicate in	TRH/BTEX/PAH, Heavy metals
	residual.	
BH230 0.9-1.0	Inter-laboratory duplicate in	TRH/BTEX/PAH, Heavy metals
	residual.	
BH220 0.9-1.0	Iner-laboratory duplicate in residual.	TRH/BTEX/PAH, Heavy metals
DW1	Water sample from Dam 1.	TRH/BTEX/PAH, Heavy metals,
		OC/OP Pesticides, Total hardness
DW2	Water sample from Dam 2.	TRH/BTEX/PAH, Heavy metals,
		OC/OP Pesticides, Total hardness

7.2 Sampling Methodology

Fieldwork carried out on 11 and 12 September 2017 involved drilling 30 boreholes (BH1 to BH30) using a skid steer Dingo drill rig with 100mm solid flight augurs.

Soil samples for contamination testing were collected using a stainless steel trowel from the augur cuttings. Sampling tools were decontaminated between each sample collection using water, DECON 90 and a scrubbing brush. All samples were placed in glass jars with plastic caps and teflon seals with minimum headspace. Each sample was labelled with job number, the sample location and date. All samples were recorded on the Chain of Custody (COC) record stored in our office files.

The field investigation was carried out by an Environmental Scientist from NG who selected borehole locations, carried out sampling and prepared borehole logs. Borehole locations are shown on the site plan in Appendix B and the borehole logs are included in Appendix C.

8.0 Quality Assurance & Quality Control

8.1 Field Quality Assurance & Quality control

Field quality assurance objectives were designed based on Australian Standard AS4482 and comprised the following:

- Sample collection and dispatch to testing laboratory were carried out by experienced environmental/ civil engineers appropriately trained for such tests.
- All sampling tools were decontaminated prior to use.
- Chain of custody forms were used in dispatching samples.
- Containers, sampling packaging and holding times were checked prior to dispatch of samples and checked after samples were received by the laboratories.

Two intra and inter laboratory duplicate samples were tested during the investigation. The results are summarised below.

		BH30 0.9-	BH130 0.9-	RPD
Sample ID	LOR	1.0	1.0	(%)
Arsenic	3	2	2	N/A
Cadmium	0.3	0.4	0.5	N/A
Chromium	0.5	21	21	0%
Copper	0.5	26	25	4%
Lead	1	10	10	0%
Nickel	0.5	8.6	8.1	6%
Zinc	2	50	49	2%
Mercury	0.05	<0.05	<0.05	N/A
TRH (F1)	25	<25	<25	N/A
TRH (F2)	25	<25	<25	N/A
TRH (F3)	90	<90	<90	N/A
TRH (F4)	120	<120	<120	N/A
BTEX	0.6	<0.6	<0.6	N/A
PAH	0.8	<0.8	<0.8	N/A

 Table 6
 Summary of results of intra-laboratory duplicate sample 1

		BH20 0.9-	BH120 0.9-	RPD
Sample ID	LOR	1.0	1.0	(%)
Arsenic	3	3	2	N/A
Cadmium	0.3	0.9	0.9	N/A
Chromium	0.5	25	21	17%
Copper	0.5	12	11	9%
Lead	1	16	12	29%
Nickel	0.5	2.8	2.4	N/A
Zinc	2	17	15	N/A
Mercury	0.05	<0.05	<0.05	N/A
TRH (F1)	25	<25	<25	N/A
TRH (F2)	25	<25	<25	N/A
TRH (F3)	90	<90	<90	N/A
TRH (F4)	120	<120	<120	N/A
BTEX	0.6	<0.6	<0.6	N/A
PAH	0.8	<0.8	<0.8	N/A

 Table 7
 Summary of results of intra-laboratory duplicate sample 2

 Table 8
 Summary of results of inter-laboratory duplicate sample 1

		BH30 0.9-	BH230 0.9-	RPD
Sample ID	LOR	1.0	1.0	(%)
Arsenic	3	2	3	N/A
Cadmium	0.3	0.4	<0.2	N/A
Chromium	0.5	21	11	63%
Copper	0.5	26	16	48%
Lead	1	10	8	N/A
Nickel	0.5	8.6	4	N/A
Zinc	2	50	26	N/A
Mercury	0.5	<0.05	<0.05	N/A
TRH (F1)	25	<25	<25	N/A
TRH (F2)	25	<25	<25	N/A
TRH (F3)	90	<90	<90	N/A
TRH (F4)	120	<120	<120	N/A
BTEX	0.6	<0.6	<0.6	N/A
PAH	0.8	<0.8	<0.8	N/A

	Our second of the second
l able 9	Summary of results of inter-laboratory duplicate sample 2

		BH20 0.9-	BH220 0.9-	RPD
Sample ID	LOR	1.0	1.0	(%)
Arsenic	3	3	<2	N/A
Cadmium	0.3	0.9	<0.2	N/A
Chromium	0.5	25	6	123%
Copper	0.5	12	3	120%
Lead	1	16	7	N/A
Nickel	0.5	2.8	<2	N/A
Zinc	2	17	2	N/A
Mercury	0.5	<0.05	<0.05	N/A
TRH (F1)	25	<25	<25	N/A
TRH (F2)	25	<25	<25	N/A
TRH (F3)	90	<90	<90	N/A
TRH (F4)	120	<120	<120	N/A
BTEX	0.6	<0.6	<0.6	N/A
PAH	0.8	<0.8	<0.8	N/A

Notes:

1. N/A indicates that sample results for analyte are not greater than 10 times the Limit of Reporting (LOR)

RPD values obtained for duplicate samples were below the allowable limit of 30-50% (Australian Standard AS 4482.1) for intra-laboratory duplicate samples. However, both interlaboratory duplicate samples were greater than the limit. This indicates that the results of the secondary laboratory may not be reliable. The samples are being reanalysed by the laboratory.

The trip blank recorded less than laboratory detection levels for TRH/BTEX/PAH. Recovery on the trip spike was greater than 84% for all samples which is acceptable.

On the basis of the analytical data validation procedures employed, the overall quality of the analytical data produced is considered to be of an acceptable standard for interpretive use.

8.2 Laboratory Quality Assurance & Quality Control

Only NATA accredited laboratories were used for testing. Certificates of analysis and quality control records were reviewed for each batch of test results.

Specific elements that have been checked and assessed include the following:

- Preservation and storage of samples upon collection and during transport to the laboratory;
- Sample holding times;
- Use of appropriate analytical and field sampling procedures;
- Required limits of reporting;
- Frequency of conducting quality control measurements;
- The occurrences of apparently unusual or anomalous results, eg laboratory results that appear to be inconsistent with field observations or measurements have been assessed.

On the basis of the analytical data validation procedures employed, the overall quality of the analytical data produced is considered to be of an acceptable standard for interpretive use.

9.0 Assessment Criteria

9.1 Soil

The assessment of potentially contaminated land involves the evaluation of potential human health hazards and environmental impacts. The receptors (or potential receptors) of concern may be within the site being assessed, or outside the site boundaries due to potential off-site migration of contaminants.

The following assessment criteria were used for assessment of the site soils:

• The Health Investigation Levels (HILs) and Health Screening Levels (HSLs) summarised in the following Table 10 to 12, which are extracted from Schedule B1 of the NEPM Guidelines May 2013 are used for assessing the risk to human health.

• The Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) summarised in the following Table 13 to 14 from Schedule B1 of the NEPM Guidelines May 2013 are used for assessing the risk to the environment.

	Health-based
	investigation
	levels (mg/kg)
Chemical	Residential ¹ A
Metals and Inorganics	
Arsenic ²	100
Cadmium	20
Chromium (VI)	100
Copper	6000
Lead ³	300
Mercury (inorganic) ⁵	40
Methyl mercury ⁴	10
Nickel	400
Zinc	7400
Polycyclic Aromatic Hydrocarbo	ons (PAHs)
Carcinogenic PAHs (as BaP	
	3
	300
Organochlorine Pesticides	
DDT+DDE+DDD	240
Aldrin and dieldrin	6
Chlordane	50
Endosulfan	270
Endrin	10
Heptachlor	6
НСВ	10
Methoxychlor	300
Mirex	10
Toxaphene	20
Other Pesticides	
Atrazine	320
Chlorpyrifos	160
Bifenthrin	600

Table 10

Table 11	Soil HSLs for vapour intrusion (mg/kg)				
	HSL A & HSL B				
	Low –	high der			
CHEMICAL	0 m to <1	1 m to <2	2 m to		Soil saturation concentration (Csat)
	m	m	<4m	4 m+	
		SAN	D		
Toluene	160	220	310	540	560
Ethylbenzene	55	NL	NL	NL	64
Xylenes	40	60	95	170	300
Naphthalene	3	NL	NL	NL	9
Benzene	0.5	0.5	0.5	0.5	360
F1	45	70	110	200	950
F2	110	240	440	NL	560
		SILT	Г		
Toluene	390	NL	NL	NL	640
Ethylbenzene	NL	NL	NL	NL	69
Xylenes	95	210	NL	NL	330
Naphthalene	4	NL	NL	NL	10
Benzene	0.6	0.7	1	2	440
F1	40	65	100	190	910
F2	230	NL	NL	NL	570
CLAY					
Toluene	480	NL	NL	NL	630
Ethylbenzene	NL	NL	NL	NL	68
Xylenes	110	310	NL	NL	330
Naphthalene	5	NL	NL	NL	10
Benzene	0.7	1	2	3	430
F1	50	90	150	290	850
F2	280	NL	NL	NL	560

Table 12	Health screening	lovels for ashestos	contamination in soil
	nealin screening	levels ioi aspesios	containination in son

	Health Screening Level (w/w)
Form of asbestos	Residential A
Bonded ACM	0.01%
Friable asbestos (FA) and asbestos fines (AF)	0.001%
All forms of asbestos	No visible asbestos for surface soil

Table 13

ESLs for TRH Fractions F1 – F4, BTEX and Benzo(a)pyrene in

CHEMICAL	Soil	ESLs (mg/kg dry
	texture	soil)
		Urban residential
		and public open
		space
F1 C ₆ -C ₁₀	Coarse	180*
F2 >C ₁₀ -C ₁₆	/ Fine	120*
F3 >C ₁₆ -C ₃₄	Coarse	300
	Fine	1300
F4 >C ₃₄ -C ₄₀	Coarse	2800
	Fine	5600
Benzene	Coarse	50
	Fine	65
Toluene	Coarse	85
	Fine	105
Ethylbenzene	Coarse	70
	Fine	125
Xylenes	Coarse	105
	Fine	45
Benzo(a)pyrene	Coarse	0.7
	Fine	0.7

	Ecological investigation levels (mg/kg)
Chemical	Urban residential/public open space
Metals and Inorganics	
Arsenic	100
Chromium (III)	190
Copper	60
Lead	1100
Nickel	30
Zinc	110
Naphthalene	170
DDT	180

Table 14 EILs for contaminants in Soil

Notes:

- 1. The EIL is calculated from summing the Added Contaminant Limit (ACL) and the Ambient Background Concentration (ABC).
- 2. The EIL for soil is based on the most conservative CEC and pH as no results were available.

The subject site is proposed for residential use. Consequently, the issues of concern for contamination within the site are considered to be the risk of harm to human health and environmental impacts.

The test results for soils will therefore be assessed against the available Health Investigation Levels (HIL) for residential with gardens/accessible soil (HIL A) and Ecological Investigation Levels (EIL) for urban residential/public open space.

9.2 Water

Water samples collected from groundwater and dams will be compared with the *Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000)* for freshwater ecosystems for the protection of 95% of species. The guideline values are presented in Table 15.

Table 15	5 ANZECC guidelines for freshwater ecosystems		
Chemical		Trigger values for freshwater (μ gL ⁻¹)	
		95% Protection of Species	
METALS & METALLO	DIDS		
Arsenic (As III)		24	
Arsenic (AsV)		13	
Cadmium	Н	0.3	
Chromium (Cr III)	Н	ID	
Chromium (CrVI)		2.0	
Copper	Н	1.9	

Chemical		Trigger values for freshwater (μ gL ⁻¹)
		95% Protection of Species
Lead H	ł	5.2
Mercury (inorganic) E	3	0.6
Mercury (methyl)		ID
Nickel	ł	14.6
Zinc H	ł	10.6
AROMATIC HYDROCARBO	NS	
Benzene		950
Toluene		ID
Ethylbenzene		ID
o-xylene		350
<i>m</i> -xylene		ID
<i>p</i> -xylene		200
<i>m</i> + <i>p</i> -xylene		ID
Cumene		ID
Polycyclic Aromatic Hydroc	arl	bons
Naphthalene		16
Anthracene E	3	ID
Phenanthrene E	3	ID
Fluoranthene E	3	ID
Benzo(a)pyrene E	3	ID
ORGANOCHLORINE PESTI		DES
Aldrin E	3	ID
Chlordane E	3	0.08
DDE E	3	ID
DDT E	3	0.01
Dicofol E	3	ID
Dieldrin E	3	ID
Endosulfan E	3	0.2 ^A
Endosulfan alpha E	3	ID
Endosulfan beta E	3	ID
Endrin E	3	0.02
Heptachlor E	3	0.09
Lindane		0.2
Methoxychlor E	3	ID
Mirex E	3	ID
Toxaphene E	3	0.2
ORGANOPHOSPHORUS PE	ST	ICIDES
Azinphos methyl		0.02
Chlorpyrifos E	3	0.01
Demeton		ID
Demeton-S-methyl		ID
Diazinon		0.01
Dimethoate		0.15
Fenitrothion		0.2
Malathion		0.05
Parathion		0.004 ^c
Profenofos E	3	ID
Temephos	3	ID

Notes:

- 1. Values in grey shading are the trigger values applying to typical *slightly–moderately disturbed systems*
- 2. B = Chemicals for which possible bioaccumulation and secondary poisoning effects should be considered.
- 3. H = Chemicals for which algorithms have been provided in the ANZECC guidelines in table 3.4.3 to account for the effects of hardness. The values for dam water have been calculated using a site-specific hardness of 32mg/L CaCO₃.

10.0 Results & Discussion

10.1 Visual Assessment

Boreholes drilled in the walls of Dams 1 and 2 (BH14 to BH17), driveway (BH1 to BH3) and holding area (BH11) were found to contain fill with no construction rubbish or foreign materials. Borehole BH13 was found to contain ash on the surface.

10.2 Analytical Test Results – Soil

Tests were carried out on discrete soil samples collected mainly from areas assessed to have a risk of contamination. The results are summarised in Appendix D and are discussed below:

10.2.1 Metals

The concentration of heavy metals in soil were below the HIL and EIL in most samples tested. However, samples BH7 0-0.1 and BH13 0-0.1 were found to contain concentrations of zinc exceeding the EIL. Sample BH13 0-0.1 was also found to contain concentrations of lead exceeding the HIL. Sample BH7 0-0.1 was collected from topsoil adjacent to the UST and sample BH13 0-0.1 was collected from an ash pile which is the likely source of contamination.

10.2.2 Polynuclear Aromatic Hydrocarbon

The concentration of PAH in samples tested were below the HSLs and ESLs for all samples.

10.2.3 Total Recoverable Hydrocarbons & BTEX

The concentration of TRH and BTEX in samples tested was below the HSLs and ESLs in most samples. However, samples BH7 0.4-0.5 and BH7 0.9-1.0 were found to contain concentrations of TRH C16 to C34 (F3) greater than the ESL for fine grained soils. The source of TRH is likely the adjacent UST.

10.2.4 OC/OP Pesticides

The concentration of OC/OP Pesticides in samples tested was below the laboratory detection levels all samples.

10.2.5 Asbestos

No asbestos was detected in any of the samples tested.

10.3 Analytical Test Results – Dam Water

Tests were carried out on dam water samples collected. The results were compared to the *Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000)* for freshwater ecosystems for the protection of 95% of species. The results are discussed below:

10.3.1 Metals

The concentration of most heavy metals were less than the relevant trigger values for most metals. However, the concentration of copper in DW1 and DW2 exceeded the trigger value. The concentration of total chromium exceeded the trigger value for chromium VI.

10.3.2 TRH/BTEX/PAH

The dam water samples were tested for TRH/BTEX/PAH compounds and the results were below the laboratory detection levels.

10.3.3 OC/OP Pesticides

The dam water samples were tested for OC/OP Pesticides and the results were below the laboratory detection levels.

11.0 Site Characterisation

Based on the results of this investigation, it is evident that there are some areas of contamination at the subject site. These have been named areas of environmental concern (AECs). A summary of the contamination encountered is presented in Table 16 and estimated volume of contaminated material is presented in Table 17.

	Table 16 Description of Contamination Present in AECs	
AEC	Location and Contamination	
AEC 1	 Soils near UST/AST. 	
	 Sample BH7 0.4-0.5 and BH7 0.9-1.0 contains concentrations of TR 	۲I
	C16 to C34 (F3) greater than the ESL for fine grained soils.	
	 Sample BH7 0-0.1 contains concentrations of zinc exceeding the EIL. 	
AEC 2	 Stained surface soils adjacent to the machinery shed. 	
	 Soils have hydrocarbon staining and odour and are assessed to be 	с
	aesthetically impacted.	
AEC 3	 Area of burnt material. 	
	 Sample BH13 contains concentrations of zinc greater than the EIL ar 	nd
	lead greater than the HIL.	

AEC	Approximate Area (m ²)	Average Depth/ Thickness of Contaminated Layer (m)	Volume of Contaminated Material (m ³)
AEC 1	12.5	1.5	19
AEC 2	20	0.1	2
AEC 3	20	0.5	10
		Total (max)	31

 Table 17
 Estimated Dimensions and Volumes of Areas of Environmental Concern

12.0 Conclusions

Based on the findings of this investigation the following conclusions are made:

- Laboratory testing of soil samples and visual assessment identified three AECs which require remediation.
- Dam water samples recorded concentrations of some heavy metals greater than the relevant trigger values. Therefore, the water may be irrigated across the site or used during earthworks for dust suppression but cannot be discharged to stormwater or creeks.
- If demolition of existing structures is proposed, care should be taken when removing the residence, sheds, septic tanks and when excavating dam walls and driveway areas as asbestos may be buried in these areas. We recommend that a hazardous material survey be carried out prior to demolition of structures. If asbestos is found an accredited contractor with a licence to handle asbestos should be engaged for demolition.
- Further testing should be carried out after the removal of sheds, dwellings and driveway areas for any residual contamination.

Based on the above, it is recommended that a Remediation Action Plan (RAP) be prepared which details remediation options and goals and the actions which must be carried out in order to meet these goals and validation procedures. It is assessed that the site can be remediated in order to be made suitable for the proposed rezoning to rural residential land use.

13.0 References

- 1. National Environment Protection Measures (NEPM) (2013)
- 2. Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000)

Network Geotechnics Pty Ltd

Appendix A

Information Sheets

LIMITATIONS

Scope of Services: The report has been prepared in accordance with the scope of services set out in NG's Proposal under NG's Terms of Engagement, or as otherwise agreed with the Client. The scope of services may have been limited and/or amended by a range of factors including time, budget, access and site constraints.

Specific Purpose: The report is provided for the specific development and purpose as described in the report. The report may not contain sufficient information for developments or purposes other than that described in the report.

Currency of Information: The information in this report is considered accurate at the date of issue with regard to the current conditions of the site.

Reliance on Information: In preparing the report NG has necessarily relied upon information provided by the Client and/or their Agents. Such data may include surveys, analyses, designs, maps and plans. NG has not verified the accuracy or completeness of the data except as stated in this report.

Copyright and Reproduction: The contents of this document are and remain the intellectual property of NG. This document should only be used for the purpose for which it was commissioned and should not be used for other projects or by a third party. This report shall not be reproduced either totally or in part without the permission of NG. Where information from this report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimise the likelihood of misinterpretation.

Construction Specifications: Unless otherwise stated, the report, or sections of the report, should not be used as part of a specification for a project, without review and agreement by NG.

Report Should Not be Separated: The report must be read in conjunction with the attached Information Sheets and any other explanatory notes and should be kept in its entirety without separation of individual pages or sections.

Review by Others: NG cannot be held responsible for interpretations or conclusions from review by others of this report or test data, which are not otherwise supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

GENERAL NOTES

Geotechnical and Environmental Reporting: Geotechnical and environmental reporting relies on the interpretation of factual information based on judgment and opinion and is far less exact than other engineering or design disciplines. Geotechnical and environmental reports are for a specific purpose, development and site as described in the report and may not contain sufficient information for other purposes, developments or sites (including adjacent sites) other than that described in the report.

Subsurface Conditions: Subsurface conditions can change with time and can vary between test locations. For example, the actual interface between the materials may be far more gradual or abrupt than indicated and contaminant presence may be affected by spatial and temporal patterns. Therefore, actual conditions in areas not sampled may differ from those predicted since no subsurface investigation, no matter how comprehensive, can reveal all subsurface details and anomalies. Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations can also affect subsurface conditions and thus the continuing adequacy of a geotechnical report. NG should be kept informed of any such events and should be retained to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Groundwater: Groundwater levels indicated on borehole and test pit logs are recorded at specific times. Depending on ground permeability, measured levels may or may not reflect actual levels if measured over a longer time period. Also, groundwater levels and seepage inflows may fluctuate with seasonal and environmental variations and construction activities.

Interpretation of Data: Data obtained from nominated discrete locations, subsequent laboratory testing and empirical or external sources are interpreted by trained professionals in order to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions in accordance with any relevant industry standards, guidelines or procedures.

Soil and Rock Descriptions: Soil and rock descriptions are based on AS 1726 – 1993, using visual and tactile assessment except at discrete locations where field and / or laboratory tests have been carried out. Refer to the accompanying soil and rock terms sheet for further information.

Further Advice: NG would be pleased to further discuss how any of the above issues could affect a specific project. We would also be pleased to provide further advice or assistance including:

- Assessment of suitability of designs and construction techniques;
- Contract documentation and specification;
- Construction control testing (earthworks, pavement materials, concrete);
- Construction advice (foundation assessments, excavation support).

Abbreviations, Notes & Symbols

SUBSURFACE INVESTIGATION

METHOD			
Borehole	Logs	Excavatio	on Logs
AS#	Auger screwing (#-bit)	BH	Backhoe/excavator bucket
AD#	Auger drilling (#-bit)	NE	Natural exposure
В	Blank bit	HE	Hand excavation
V	V-bit	Х	Existing excavation
Т	TC-bit		-
HA	Hand auger	Cored Bo	rehole Logs
R	Roller/tricone	NMLC	NMLC core drilling
W	Washbore	NQ/HQ	Wireline core drilling
AH	Air hammer		0
AT	Air track		
LB	Light bore push tube		
MC	Macro core push tube		
DT	Dual core push tube		
SUPPORT	Г		
Borehole	Logs	Excavatio	on Logs
С	Casing	S	Shoring
Μ	Mud	В	Benched
	G		
B	Bulk sample		
D	Disturbed sample		
U#	Thin-walled tube sample	(#mm diam	ieter)
ES	Environmental		,
	sample		
EW	Environmental water sam	ple	
FIELD TE	STING		
PP	Pocket penetrometer (kP	a)	
DCP	Dynamic cone penetrome	eter	
PSP	Perth sand penetrometer		
SPT	Standard penetration test		
PBT	Plate bearing test		
Su	Vane shear strength peal	<pre>k/residual (</pre>	kPa) and vane size (mm)
N*	SPT (blows per 300mm)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Nc	SPT with solid cone		
R	Refusal		
*denotes sample taken			
BOUNDA	RIES		

SOIL

MOISTURE CONDITION

Known

---- Probable Possible

D	Dry
M	Moist
W	Wet
Wp	Plastic Limit
WI	Liquid Limit
MC	Moisture Content

CONSISTENCY

VS	Very Soft
s	Soft
F	Firm
St	Stiff
VSt	Very Stiff
н	Hard
Fb	Friable

USCS SYMBOLS

GW Well graded gravels and gravel-sand mixtures, little or no fines GP Poorly graded gravels and gravel-sand mixtures, little or no

VL

MD

1

D

VD

DENSITY INDEX

Very Loose

Medium Dense

Loose

Dense Very Dense

fines

GM Silty gravels, gravel-sand-silt mixtures

GC Clayey gravels, gravel-sand-clay mixtures

- Geotechnics
- SW Well graded sands and gravelly sands, little or no fines
- SP Poorly graded sands and gravelly sands, little or no fines
- SM Silty sand, sand-silt mixtures
- SC Clayey sand, sand-clay mixtures
- Inorganic silts of low plasticity, very fine sands, rock flour, silty ML or clayey fine sands
- CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays
- OL Organic silts and organic silty clays of low plasticity
- MH CH Inorganic silts of high plasticity
- Inorganic clays of high plasticity
- OH Organic clays of medium to high plasticity Peat muck and other highly organic soils PT

ROCK

WEATHERING

WEATHERING		STRENGTH	
RS	Residual Soil	EL	Extremely Low
XW	Extremely Weathered	VL	Very Low
HW	Highly Weathered	L	Low
MW	Moderately Weathered	M	Medium
DW*	Distinctly Weathered	н	High
SW	Slightly Weathered	VH	Very High
FR	Fresh	EH	Extremely High
*covers both HW & MW			

ROCK QUALITY DESIGNATION (%)

sum of intact core pieces > 100mm x 100 total length of section being evaluated

CORE RECOVERY (%)

=	core recovered	х	100
	core llft		

NATURAL FRACTURES

Туре	
JT	Joint
BP	Bedding plane
SM	Seam
FZ	Fractured zone
SZ	Shear zone
VN	Vein

Infill or Coating

Cn	Clean
St	Stained
/n	Veneer
Co	Coating
CI	Clay
Ca	Calcite
e	Iron oxide
Мi	Micaceous
Ωz	Quartz

Shape

pl	Planar
cu	Curved
un	Undulose
st	Stepped
ir	Irregular

Roughness

Polished
Slickensided
Smooth
Rough

Soil & Rock Terms

<u>SOIL</u>

MOISTURE CONDITION

Term	Description
Dry	Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils rur freely through the hand.
Moist	Feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet	As for moist, but with free water forming on hands wher handled.

For cohesive soils, moisture content may also be described in relation to plastic limit (W_P) or liquid limit (W_L). [>> much greater than, > greater than, < less than, << much less than].

CONSISTENCY

Term	c _u (kPa)	Term	c _u (kPa)
Very Soft	< 12	Very Stiff	100 - 200
Soft	12 - 25	Hard	> 200
Firm	25 - 50	Friable	-
Stiff	50 - 100		
DENSITY INDEX			
Term	l⊳ (%)	Term	I⊳ (%)
Very Loose	< 15	Dense	65 – 85

Name	Subdivision	Size (mm)	
PARTICLE SIZE			
Medium Dense	35 – 65		
LOUSE	10 00	Very Dense	2 00
Loose	15 – 35	Very Dense	> 85
voly 20000	< 10	Donoo	00 00

Name	Subulvision	Size (mm)
Boulders		> 200
Cobbles		63 - 200
Gravel	coarse	20 - 63
	medium	6 - 20
	fine	2.36 - 6
Sand	coarse	0.6 - 2.36
	medium	0.2 - 0.6
	fine	0.075 - 0.2
Silt & Clay		< 0.075

MINOR COMPONENTS

Term	Proportion by Mass coarse grained	fine grained		
Trace	≤ 5%	≤ 15%		
Some	5 - 2%	15 - 30%		

SOIL ZONING

Layers	Continuous exposures
Lenses	Discontinuous layers of lenticular shape
Pockets	Irregular inclusions of different material

SOIL CEMENTING

 Weakly
 Easily broken up by hand

 Moderately
 Effort is required to break up the soil by hand

SOIL STRUCTURE

Massive	Coherent, with any partings both vertically and horizontally spaced at greater than 100mm
Weak	Peds indistinct and barely observable on pit face. When disturbed approx. 30% consist of peds smaller than 100mm
Strong	Peds are quite distinct in undisturbed soil. When disturbed >60% consists of peds smaller than 100mm

ROCK

SEDIMENTARY ROCK TYPE DEFINITIONS

Definition (more than 50% of rock consists of)
gravel sized (> 2mm) fragments
sand sized (0.06 to 2mm) grains
silt sized (<0.06mm) particles, rock is not laminated
clay, rock is not laminated
silt or clay sized particles, rock is laminated

STRENGTH							
Term	ls50 (MPa)	Term	ls50 (MPa)				
Extremely Low	< 0.03	High	1 – 3				
Very Low	0.03 – 0.1	Very High	3 – 10				
Low	0.1 – 0.3	Extremely High	> 10				
Medium	0.3 – 1						
WEATHERING							
Term	Description						
Residual Soil	Soil developed on structure and subs	extremely weathere tance fabric are no	ed rock; the mass longer evident				
Extremely Weathered	Rock is weathered properties, i.e. it ei remoulded, in wate visible	to such an extent to ther disintegrates o er. Fabric of original	hat it has 'soil' r can be rock is still				
Highly Weathered	Rock strength usu rock may be highly	ally highly changed / discoloured	by weathering;				
Moderately Weathered	Rock strength usu weathering; rock n	ally moderately char nay be moderately c	nged by liscoloured				
Distinctly Weathered	See 'Highly Weath	ered' or 'Moderately	Weathered'				
Slightly Weathered	Rock is slightly dis change of strength	coloured but shows from fresh rock	little or no				
Fresh	Rock shows no sig	ons of decomposition	n or staining				
NATURAL FRACT	URES						
loint		arack across which t	bo rock bas little				
Joint	or no tensile streng	gth. May be open or	closed				
Bedding plane	Arrangement in lay or composition	vers of mineral grair	is of similar sizes				
Seam	Seam with deposit insitu rock (XW), o fragments of the h	ed soil (infill), extrer r disoriented usually ost rock (crushed)	nely weathered / angular				
Shear zone	Zone with roughly parallel planar boundaries, of rock material intersected by closely spaced (generally < 50mm) joints and /or microscopic fracture (cleavage) planes						
Vein	Intrusion of any sh mass. Usually igne	ape dissimilar to the eous	adjoining rock				
Shape	Description						
Planar	Consistent orienta	tion					
Curved	Gradual change in	orientation					
Undulose	Wavy surface						
Stepped	One or more well of	defined steps					
Irregular	Many sharp chang	es in orientation					
Infill or Coating	Description						
Clean	No visible coating	or discolouring					
Stained	No visible coating	but surfaces are dis	coloured				
Veneer	A visible coating of may be patchy	f soil or mineral, too	thin to measure;				
Coating Visible coating ≤ 1mm thick. Ticker soil material described as seam							
Roughness	Description						
Polished	Shiny smooth surf	ace					
Slickensided	Grooved or striated surface, usually polished						
Smooth	Smooth to touch. Few or no surface irregularities						
Rough	Many small surfac 1mm). Feels like fi	e irregularities (amp ne to coarse sandpa	litude generally < aper				

Note: soil and rock descriptions are generally in accordance with AS1726-1993 Geotechnical Site Investigations

Graphic Symbols Index

Soil		Rock		Water Meas	urements
	Fill		Sandstone	<u>.</u>	Level at time of drilling
1/ 3/1/ 3/1/ 1 1/ 3/1/ 3/1/ 1 1/ 1/ 1/ 1/ 1/ 1/	Peat, Topsoil		Shale	Ŧ	Level after drilling
	Clay		Clayey Shale	►	Inflow
	Silty Clay		Siltstone	-	Outflow
	Gravelly Clay		Conglomerate		
	Sandy Clay	/ / / / / / / / / / / / / / / / / / /	Claystone		
	Silt		Dolerite, Basalt		
	Sandy Silt	+ + + + + + + + + + + + + + + + + + +	Granite		
	Clayey Silt		Limestone		
	Gravelly Silt		Tuff		
	Gravel		Coarse grained Metamorphic		
	Sandy Gravel		Medium grained Metamorphic		
	Clayey Gravel		Fine grained Metamorphic		
	Silty Gravel		Coal		
	Sand	Other			
	Gravelly Sand		Asphalt		
	Silty Sand		Concrete		
	Clayey Sand		Brick		

Appendix B

Site Plan and Test Locations

MT KURING-GAI NSW 2080 Tel: (02) 8438 0300 Fax: (02) 8438 0310 Email: engineering@netrep.com.au	Drawing No: G09/2571-1	Sheet: 1 of 1	SITE PLAN			
12/9-15 Gundah Road	Drawn By: TPR	Location: 510 Beach Road, Berry				
Retwork	Date: 12/10/17	Project: Proposed Residential Subdivision				
	Scale: On drawing	Client: Richard and	Enid Hall			

		Scale: On drawing	Client: Richard and	l Enid Hall
•		Date: 12/10/17	Project: Proposed	Residential Subdivision
12/9- МТ К	-15 Gundah Road, KI JENG-GALNSW 2080	Drawn By: TPR	Location: 510 Bead	ch Road, Berry
Tei: (Fax: (Email	(02) 8438 0300 (02) 8438 0310 il: engineering@netgeo.com.au	Drawing No: G09/2571-2	Sheet: 1 of 1	SITE PLAN

Appendix C

Borehole Logs

ACN 069 211 561 Unit 12 7/15 Gundah Road Mt Kuring Gai NSW 2080 02 84380300 Hole No: BH01

			02 84380300 02 84380310					Hole N	Hole No: BH01					
											Sheet: PAGE 1 / 1			
Cli	Client: Richard Hall Project: Proposed Residential Subdivision										Started: 11/09/17			
Pr											11/09/17			
Lo	Location: 510 Beach Road, Berry									l:	TPR			
				GPS (-	·)				Checke	ed:	VDS			
Eq	nuipr	nent T		:		Dingo	o drill Rig		RL Sur	face:				
Bo	oreh	ole Dia	ame	ter: 100)(O.D.)	-	Inclination:	Bearing:	Datum:					
			T				Material Description							
		ests	s E	Ē	p	lođr			ω⊏	Icy/ Tsity	conments			
ethod	vater	oles, t etc	P Blo	pth (n	phic I	Ssyr			oistur	sister ve de				
ů,		samp	DC DC	de	gra	nsc			ž S	Con relati	notes, structure, and additional			
											observations			
	ered	D				GP	Sandy GRAVEL, medium to coarse grained, grey		м		FILL			
	count		1			CL/CI	Silty CLAY, low to medium plasticity, brown, some gravel		≥Wp					
	Je Enc			L							-			
	Nor													
		D		–							-			
ADT						СІ/СН	CLAY, medium to high plasticity, grey mottled orange, some silt		_		RESIDUAL			
				_							-			
				–							-			
			-											
			-	1.0										
				-							-			
				_							_			
				-							-			
1/25/1														
DI				L							_			
0.0														
μL														
NICS				2.0										
ECH														
GEO				L							-			
ORK														
L L L				-							-			
JGS.C														
e rc				L							_			
ELO														
EHOL														
BOR				_							-			
							Refer To Explanation Sheets For Description Of Term	s And Symbols Us	sed.					

ACN 069 211 561 Unit 12 7/15 Gundah Road Mt Kuring Gai NSW 2080 02 84380300 Hole No: BH02

				02 84380310					Hole No: BH02			
									Sheet:		PAGE 1 / 1	
Cli	ient:			Richar	d Hall				Started: 11/09/17			
Pr	ojec	:t:		Propos	ed Re	sider	tial Subdivision		Finished: 11/09/17			
Lo	Location: 510 Beach Road, Berry									d:	TPR	
				GPS (-	·)				Checke	ed:	VDS	
Ec	quipr	nent T	ype	:		Dingo	o drill Rig		RL Sur	face:		
Bc	reh	ole Dia	amet	ter: 100	D(O.D.)		Inclination:	Bearing:	Datum	:		
_							Material Description				comments	
		tests	ws	(L	boj	lodr			e c	ncy/ insity	commente	
ethoc	water	ples, etc	2 Blc	epth (r	aphic	CS syl			loistu onditid	nsiste ive de		
Ē		sam	DC DC	ą	gra	nsc			≥ŏ	Cor	notes, structure, and additional	
											observations	
	ered	D				GP	Sandy GRAVEL, medium to coarse grained, grey		м		FILL	
	count		1			CL/CI	Silty CLAY, low to medium plasticity, brown, some gravel		≤Wp			
	ne En			_							-	
	No											
											_	
		D										
AD1			-									
				_							-	
				_							-	
			-									
			-	1.0			BH02 Terminated at 1 m					
				_							-	
				_							-	
~				_							-	
9/25/1												
TOS				_							-	
<u> </u>												
FT				2.0								
INICS				2.0								
희												
GEO				_							-	
0RK												
≤ I I I												
L L L L L L L L L L L L L L L L L L L											-	
JGS.(
g LC				—							-	
E LC												
EHOI												
BOR				_							-	

G09/2571

ACN 069 211 561 Unit 12 7/15 Gundah Road Mt Kuring Gai NSW 2080 02 84380300 Hole No:

							02 84380 02 84380	02 84380300 02 84380310			Hole No: BH03			
											PAGE 1 / 1			
Cli	ent:			Richar	d Hall				Started	Started: 11/09/17				
Pro	oject	t:		Propos	ed Re	sider	ntial Subdivision		Finishe	d:	11/09/17			
Lo	catio	on:		510 Be	ach R	load,	Berry		Logged	l:	TPR			
				GPS (-)				Checke	ed:	VDS			
Ea	uipn	nent T		:		Dingo	o drill Rig		RL Sur	face:				
Bo	reho	ole Dia	amet)(O.D.)		Inclination:	Bearing:	Datum:					
							Material Description							
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations			
	ered	D				GP	Sandy GRAVEL, medium to coarse grained, grey		м		FILL			
	counte					CL/CI	Silty CLAY, low to medium plasticity, brown, some gravel		≤Wp					
	None Eno	D									_			
AD						-	SHALE, extremely weathered, orange and grey		-		RESIDUAL			
	-	D									-			
			-	1.0			BH03 Terminated at 1 m							
											_			
											_			
											_			
											_			
				2.0										
											_			
											_			
											_			
											_			
			-		-		1							

G09/2571

ACN 069 211 561 Unit 12 7/15 Gundah Road Mt Kuring Gai NSW 2080 02 84380300 Hole No:

					02 84380310				Hole No: BH04				
				3							Sheet: PAGE 1 / 1		
Cli	ent:			Richar	d Hall			Started: 11/09/17					
Pro	oject	:		Propos	sed Re	sider	ntial Subdivision		Finishe	d:	11/09/17		
Lo	catio	n:		510 Be GPS (each R -)	load,	Berry	-	Logged	l:	TPR		
					,				Checke	ed:	VDS		
Eq	uipn	nent T	ype	:		Dingo	o drill Rig		RL Sur	face:			
Во	reho	le Dia	met	er: 10	0(O.D.)		Inclination: Bearing:		Datum:				
		<i>(</i>)				-	Material Description			~	comments		
method	water	samples, test etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbo			Moisture condition	Consistency/ relative densit	notes, structure, and additional observations		
	eq				<u>×1 1//</u>	CL/CI	Silty CLAY, low to medium plasticity, brown		≥Wp		TOPSOIL		
	Encounter	D	-			CI/CH	CLAY, medium to high plasticity, red brown, some silt						
	None										_		
ADT	-	D	-										
						CL/CI	Silty CLAY, low to medium plasticity, orange mottled grey, some gravel				RESIDUAL		
				_							_		
	-	D		10									
							BH04 Terminated at 1 m						
											_		
											_		
				_							_		
				2.0									
				_									
											_		

G09/2571

ACN 069 211 561 Unit 12 7/15 Gundah Road Mt Kuring Gai NSW 2080 02 84380300 Hole No:

				02 84380300 02 84380310			Hole No: BH05						
										Sheet: PAGE 1 / 1			
Clie	ent:			Richar	d Hall				Started	:	11/09/17		
Pro	oject	t:		Propos	ed Re	sider	itial Subdivision	Finishe	Finished: 11/09/17				
Lo	Location: 510 Beach Road, Berry								Logged: TPR				
				GPS (-	·)				Checke	ed:	VDS		
Eq	uipn	nent T	ype:			Dingo	o drill Rig		RL Sur	face:			
Bo	rehc	le Dia	met	er: 100	D(O.D.)		Inclination:	Bearing:	Datum	:			
							Material Description				comments		
_		tests	swa	Ê	log	lodm			e u	ncy/ ensity			
ethoc	wate	iples, etc	CP BIG	epth (aphic	CS sy			1oistu onditi	nsiste ive de			
E		sam	DG DG	ŏ	gr	nsc			20	Col	notes, structure, and additional		
											observations		
	Itered	D			. <u>\.</u>	CL/CI	Silty CLAY, low to medium plasticity, brown		≥Wp		TOPSOIL		
	ucoun		1		. <u></u>	ļ							
	one Ei			_		CL/CI	Silty CLAY, low to medium plasticity, brown				RESIDUAL		
	ž												
	-			_							_		
		D											
				_							-		
F													
AD				_		СИСН	CLAY medium to high plasticity, red mottled grey, traces of gravel and silt		-		_		
		D		1.0									
				_							-		
				_							_		
		D											
							BH05 Terminated at 1.5 m						
				_							-		
				_									
				20									
				_							_		
				_							_		
				_							–		
				_							_		

G09/2571

ACN 069 211 561 Unit 12 7/15 Gundah Road Mt Kuring Gai NSW 2080 02 84380300

							02 84380300		Hole N	0:	BH06
									Sheet:		PAGE 1 / 1
Cli	ent:			Richar	d Hall				Started	1:	11/09/17
Pro	oject	t:		Propos	ed Re	sider	tial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	each F	Road,	Berry		Logge	1:	TPR
				GPS (-	·)				Check	ed:	VDS
Eq	uipn	nent T	ype			Dingo	o drill Rig		RL Sur	face:	
Bo	rehc	ole Dia	met	er: 100	D(O.D.)		Inclination:	Bearing:	Datum	:	
							Material Description				comments
-	_	tests	swc	Ê	bo	mbol			e n	ncy/ ensity	
etho	wate	iples, etc	CP BI r 150	epth (aphic	CS sy			Aoistu onditi	nsiste tive d	
E		sam	DG De	ō	g	NSI			20	Col	notes, structure, and additional
											observations
	Itered	D			·····	CL/CI	Silty CLAY, low to medium plasticity, brown		≥Wp		TOPSOIL
	ucoun		1		. <u></u>	ļ					
	one E			_		CL/CI	Silty CLAY, low to medium plasticity, brown		1		RESIDUAL
	ž										
				_							_
		D									
				_							-
						СИСН	CLAY medium to biob plasticity red mottled grey traces of gravel and sill	•	-		
AD.				_							_
		D									
	-		1	1.0							
				_							_
		D		_							_
			1				BH06 Terminated at 1.5 m				
				_							_
											_
				2.0							
											_
				_							–
											_
				_							
											•

BOREHOLE LOG LOGS.GPJ NETWORK GEOTECHNICS PTY LTD.GDT 9/25/17

G09/2571

Unite Statut Project: Project Statut 1106/17 Client: Richard Hall Statut 1106/17 Leged: 1106/17 Cocition: 510 Beach Road, Berry CPS (-) Leged: 178 Cocition: Beerry Cocition: Beerry Beerry Cocition: Beerry Beerry Cocition: Beerry	
Client: Richard Hall State: 110817 Project: Proposed Residential Subdivision Insert: 110817 Location: \$10 Beach Road, Berry GPS (-) Loget: TPR Equipment Type: Dingo drill Rig Residential Subdivision Residential Subdivision Residential Subdivision Borebole Diameter: 100000 Indiantic: Bearing Datamited Topole No gr g	
$ \begin{array}{ $	
Location: 510 Beach Road, Berry GPS (-) Logen: TPR Diecked. VDS Equipment Type: Dingo drill Rig RL Surface: Boarnage RL Surface: Borcholo Diameter: 1000.0000 Indication: Bearing Dum: Value Statuse: Bearing Dum: Comments Statuse: Value Statuse: Bearing Dum: Comments Statuse: Description Description Description Description Description Description	
CPS (-) Checked: VOS Equipment Type: Dingo drill Rig RL. Surface: Connents Borehole Diameter: 100(DD) Incination: Bearing: Data:: Image: Section 2010 Incination: Bearing: Data:: Connents Image: Section 2010 Image: Section 2010 </td <td></td>	
Equipment Type: Dingo drill Rig Patient	
Bore-hole Diameter: 100(0.0) Indication: Bearing: Datum: voide	
up up <td< td=""><td></td></td<>	
n n	
order order <tholdred< th=""> <tholdred< th=""> <th< td=""><td></td></th<></tholdred<></tholdred<>	
E B S	
Image: boot of the second se	
0 0 - SMP SMP SMP TOPSOIL 0 0 - DUCt Sity CLAY, low to medium plasticity, brown SMP RESIDUAL 0 0 - 0 - DUCt Sity CLAY, low to medium plasticity, brown SMP RESIDUAL 0 0 - 0 - 0 - 0 0 0 - 0 0 - 0 0 0 - 0 0 - 0 0 0 0 - 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 <td></td>	
Image:	
Image:	
2	
Image: D Image: D <td< td=""><td></td></td<>	
D D CUCI CLAY, medium to high plasticity, red motified grey, traces of gravel and sitt 2Wp D	_
Low -	
10 -	
Image:	_
Q D D	
D	_
D	
D BH07 Terminated at 1.5 m	
D BH07 Terminated at 1.5 m - -	
D BH07 Terminated at 1.5 m - - - - - - - - - - - - - - - -	
D BH07 Terminated at 1.5 m - - - - - - - - - -	_
Image: Display to the second secon	
D BH07 Terminated at 1.5 m	
BH07 Terminated at 1.5 m	_
	-
2.0	_
2.0	
	_
	_

G09/2571

				, -			02 84380300 02 84380310		Hole N	0:	BH08
									Sheet:		PAGE 1 / 1
Clie	ent:			Richar	d Hall				Starteo	1:	11/09/17
Pro	oject	t:		Propos	ed Re	sider	ntial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	each R	load,	Berry		Loggeo	1:	TPR
				GPS (-	-)				Checke	ed:	VDS
Eq	uipn	nent T	уре	:		Dingo	o drill Rig		RL Sur	face:	
Bo	rehc	ole Dia	ame	ter: 100	0(O.D.)		Inclination:	Bearing:	Datum		
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description		Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	ered	D			<u>.x^ / /y</u>	CL/CI	Silty CLAY, low to medium plasticity, brown		≤Wp		TOPSOIL
	counte				1/ · <u>· · · ·</u>						
ADT	None En	D	-			CI/CH	CLAY, medium to high plasticity, red-brown, some silt		≥Wp		RESIDUAL –
	_	D				CL/CI	Silty CLAY, low to medium plasticity, grey mottled orange, some gravel		_		_
				1.0		1	BH08 Terminated at 1 m				
				-							
				2.0							
											_
											_
				<u> </u>							=
				<u> </u>							

G09/2571

ACN 069 211 561 Unit 12 7/15 Gundah Road Mt Kuring Gai Job No: G09/2571

				., _			02 84380300 02 84380310		Hole N	o:	BH09
									Sheet:		PAGE 1 / 1
Cli	ent:			Richar	d Hall				Starteo	1:	11/09/17
Pro	ojec	t:		Propos	ed Re	esider	tial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	each R	Road,	Berry		Logged	1:	TPR
				GPS (-	·)				Checke	ed:	VDS
Eq	uipn	nent T	ype			Ding	o drill Rig		RL Sur	face:	
Во	reho	ole Dia	met	er: 100	D(O.D.)		Inclination:	Bearing:	Datum	:	
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description		Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	σ				× 14.		Silty CLAY, low to medium plasticity, grow-brown, traces of gravel		<10/m		TOPSOIL
	Encountere	D	-		······································		Sing CLAT, now to medium plasticity, grey-brown, traces of graver		≤vvp		
	None					CI/CH	CLAY, medium to high plasticity, orange-brown		≥W		RESIDUAL
ADT		D	-			CI/CH	CLAY, medium to high plasticity, red mottled brown, traces of gravel		_		
	-	D	-	10							
							BH09 Terminated at 1 m				
				_							
											-
											_
											-
				2.0							
											_
				_							_
				_							

G09/2571

								02 84380300 02 84380310	Hole N	o:	BH10
									Sheet:		PAGE 1 / 1
С	lie	nt:			Richard	d Hall	_		Started	d:	11/09/17
P	Proi	iec	t:		Propos	ed Re	sider	tial Subdivision	Finishe	ed:	11/09/17
-		atic	on:		510 Be	ach R	oad	Berry	Logge	d:	TPR
		citic			GPS (-)	,		Check	ed:	VDS
╞	-	inn	oont T				Ding	Adrill Dia		face:	
	qu	lipn		ype			Dingo		RL Su	lace.	
В	Sor	enc	ble Dia	met	ter: 100	(O.D.)		Inclination: Bearing:	Datum	:	1
			S				-	Material Description		<u>ج _</u>	comments
7	B	fe	s, tes	3lows 0 mm	(L)	ic log	symbi		ture	tency densi	
4000	llell	wa	et	DCP E	deptt	graph	scs		Mois	onsis ative	notes, structure,
	_		sa				ő			СĒ	and additional observations
		-				1.41.					
		Itered	D			· // /		Sity CLAY, low to medium plasticity, blown	<u>≥</u> vvp		TOPSOIL
		ncoul					CL/CI	Silty CLAY, low to medium plasticity, grey	>Wp		RESIDUAL
		one E			—						-
		ž					-				
					_						_
			D								
	A										
					_		CI/CH	CLAY, medium to high plasticity, grev mottled brown	_		_
								- ,			
					_						_
		-									
			D		1.0	<i>[]]]</i>		DI 140 Terminated et 4 m			
					_						-
					_						_
					—						_
25/17											
DT 9											_
TD.G											
Γ											
IICS F					2.0						
CHN											
EOTE											_
RK 0											
OWL											
J NE					—						–
S.GP											
LOG											
LOG					<u> </u>						–
IOLE											
OREH					_						_
ЯĽ						1					

							02 84380300 02 84380310		Hole N	o :	BH11
									Sheet:		PAGE 1 / 1
Clie	ent:			Richar	d Hall				Started	1:	11/09/17
Pro	oject	t:		Propos	ed Re	sider	ntial Subdivision		Finishe	ed:	11/09/17
Loo	catio	on:		510 Be	each R	load,	Berry		Loggeo	d:	TPR
				GPS (-	·)				Checke	ed:	VDS
Eq	uipn	nent T	ype			Dingo	o drill Rig		RL Sur	face:	
Bo	rehc	ole Dia	met	er: 10	0(O.D.)		Inclination:	Bearing:	Datum	:	
							Material Description				comments
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations
	ered	D				CL/CI	Gravelly Silty CLAY, low to medium plasticity, grey		≤Wp		FILL
	counte		1								
	None En					CL/CI	Silty CLAY, low to medium plasticity, grey		>Wp		RESIDUAL
ADT	-	D	_								_
				_		CI/CH	CLAY, medium to high plasticity, orange-brown mottled grey, some silt		≥Wp		_
		D	-	1.0			RH11 Terminated at 1 m				
				_							-
				_							_
				_							_
				2.0							_
											_
											_
											-
							Defen To Europenetian Chapte For Departmention Of Terror	And all Original to a large large state			

G09/2571

				-			02 84380300 02 84380310		Hole N	0:	BH12
									Sheet:		PAGE 1 / 1
Cli	ent:			Richard	d Hall				Started	:	11/09/17
Pro	ojec	t:		Propos	ed Re	sider	ntial Subdivision		Finishe	d:	11/09/17
Lo	catio	on:		510 Be	ach R	load,	Berry		Logged	l:	TPR
				GPS (-)				Checke	ed:	VDS
Eq	uipn	nent T	ype	:		Dingo	o drill Rig		RL Sur	face:	
Во	reho	ole Dia	met	ter: 100	(O.D.)		Inclination:	Bearing:	Datum		
						_	Material Description			,	comments
g	ъ	, tests	nm	(u)	c log	ymbo			ure	ency/ lensiț	
netho	wate	nples etc	CP BI er 150	depth	raphic	CS si			Moist	ansiste ative d	notes structure
		sar	Δă	Ũ	0	SU				G	and additional observations
	8				·		Sith CLAV, low to medium plasticity, brown, traces of gravel		- 14/-		TOPSOIL
	intere	D			. <u> </u>				≥vvp		
	Encou				. <u>\ 1</u> .						
	Vone I			_		СІ/СН	Silty CLAY, medium to high plasticity, brown mottled orange				RESIDUAL
	~										
	-		-	_							-
Ц	-	D	-								
4				_			Sity CLAT, medium to high plasticity, brown motiled brange				_
				_							_
	-		-								
		D	4	1.0							
							BH12 Terminated at 1 m				
				_							-
				_							_
											_
				_							-
				2.0							
											-
				—							
				_							_
				—							
						-					

G09/2571

							02 84380310		Hole N	0:	BH13
							Sheet: PAGE 1 / Started: 11/09/17			PAGE 1 / 1	
Cli	ent:			Richa	rd Hall				Started	:	11/09/17
Pro	oject	t:		Propo	sed Re	esider	ntial Subdivision		Finishe	ed:	11/09/17
Lo	catio	n:		510 B	each F	Road,	Berry		Logged	1:	TPR
				GPS (-)				Checke	ed:	VDS
Eq	uipn	nent T	ype:			Ding	o drill Rig		RL Sur	face:	
Во	rehc	ole Dia	met	er: 10	00(O.D.)		Inclination: E	Bearing:	Datum	:	
							Material Description			,	comments
σ	5	tests	swo	(E	log	/mbol			ion	ency/ ensity	
netho	wate	nples	CP BI r 150	lepth	aphic	CS s)			Moistu	insiste tive d	notos, structuro
-		sar		0	0	IN				rela CC	and additional observations
	g					ML	Gravelly SILT, low plasticity, dark grey, (burnt material)		<wp< td=""><td></td><td>FILL</td></wp<>		FILL
	ountere	D	$\left \right $				Silty CLAY medium to high plasticity brown mottled grange		>Wn		RESIDUAL
	e Enco			_					-wp		-
	Non										
		D] [
AD			1								
				_		CI/C⊦	Silty CLAY, medium to high plasticity, brown mottled orange				_
				_							_
		D		1.0							
							BH13 Terminated at 1 m				
				_							_
				_							-
				_							_
				_							_
				2.0							
				_							_
				_							
				-							_
				_							
				_							-
							1				I

G09/2571

							02 84380300 02 84380310		Hole N	0:	BH14
						_			Sheet:		PAGE 1 / 1
Clie	ent:			Richard	d Hall				Started	1:	11/09/17
Pro	ojec	t:		Propos	ed Re	sider	ntial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	ach R	Road,	Berry		Logged	1:	TPR
				GPS (-)				Checke	ed:	VDS
Eq	uipn	nent T	ype	:		Ding	o drill Rig		RL Sur	face:	
Во	reho	ole Dia	met	er: 100	(O.D.)		Inclination:	Bearing:	Datum	:	
							Material Description			,	comments
ą	ъ	, tests	nm	(E	bol :	ymbol			ure	ency/ lensity	
netho	wat	mples	CPB er 150	depth	Iraphi	scs s			Moist	onsist ative (notes structure
-		sa	L d		0,	Š				C le	and additional observations
	σ						Silty CLAY, low to medium plasticity, brown, traces of gravel		>W/p		FILL
	untere	D							_wp		
	Encol			_							_
	None										
		D									-
	-	D	-								
				_		*					_
ADT						CI/CH	CLAY, medium to high plasticity, grey mottled orange, some silt				RESIDUAL
				_							_
		D									
			-	1.0							
				_							_
							CLAY, medium to high plasticity, grey, some slit		>vvp		
		D		_							_
							BH14 Terminated at 1.5 m				
				_							-
				_							-
				2.0							
				2.0							
				_							-
				_							_
				_							-
				_							
										-	

G09/2571

							02 84380300 02 84380310		Hole N	0:	BH15
									Sheet:		PAGE 1 / 1
Cli	ent:			Richard	d Hall				Started	:	11/09/17
Pr	ojec	:t:		Propos	ed Re	sider	tial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	ach R	load,	Berry		Loggeo	1:	TPR
				GPS (-)				Checke	ed:	VDS
Eq	uipr	nent T	ype	:		Dingo	drill Rig		RL Sur	face:	
Bo	reho	ole Dia	amet	ter: 100	(O.D.)		Inclination:	Bearing:	Datum	:	
							Material Description				commonto
		ests	ws	(r	Бõ	loqu			ес	nsity	comments
ethod	water	ples, t etc	P Blo 150 r	pth (r	aphic	S syr			oistur	isister ve de	
Ĕ		sam	DC	de	gra	nsc			Σö	Con relati	notes, structure, and additional
											observations
	ered	D				CL/CI	Silty CLAY, low to medium plasticity, brown, traces of gravel		≥Wp		FILL
	counte										
	le Enc			_			CLAV modium to high plasticity gray mattled errors some cit		-		
	Nor					0//011	OLACI, moduli to high plasticity, grey motice orange, some sin				RECIDENC
		D		_							-
				_							-
ADT						СІ/СН	CLAY, medium to high plasticity, grey, some silt		>Wp		
				_							_
				1.0							
				_							-
				_							-
		D									
							BH15 Terminated at 1.5 m				
~											-
/25/1											
DT 3				_							_
Ê.											
l ≻T q											
NICS				2.0							
ECH											
GEOI											_
ORK											
IETW.											
N Ld				<u> </u>							-
GS.G											
9				_							_
ĨПО											
EHOL											
BORI											-
							Refer To Explanation Sheets For Description Of Terms And	d Symbols Used			

G09/2571

							02 84380	310	Hole N	0:	BH16
									Sheet:		PAGE 1 / 1
Clie	ent:			Richard	d Hall				Started	:	11/09/17
Pro	ojec	t:		Propos	ed Re	esider	itial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	each R	Road,	Berry		Logged	1:	TPR
				GPS (-)				Checke	ed:	VDS
Eq	uipn	nent T	уре	:		Ding	o drill Rig		RL Sur	face:	
Во	reho	le Dia	me	ter: 100)(O.D.)		Inclination:	Bearing:	Datum	:	
							Material Description			_	comments
σ	2	tests	ows	Ê	bol	/mbol			ion	ensity	
letho	wate	nples, etc	CP BI	lepth	aphic	CS s)			Moistu	insiste tive d	notos structuro
		san		o o	5	N				rela CC	and additional
	-				XXX						
	ntered	D					Sitty CLAT, low to medium plasticity, brown		≥Wp		
	Encou					*					
	Vone F			_		CL/CI	Silty CLAY, low to medium plasticity, grey mottled orange				-
	2										
	-		-	_							-
	-	D									
				_							_
DT						СІ/СН	Silty CLAY, medium to high plasticity, grey		>Wp		RESIDUAL
				_							-
	-										
	-	D	-	1.0							
				_							_
		D	1								-
			1			1	BH16 Terminated at 1.5 m				
				_							_
				_							_
				2.0							
				_							_
											_
				_							-
											_
							<u> </u>				

G09/2571

ACN 069 211 561 Unit 12 7/15 Gundah Road Mt Kuring Gai NSW 2080 02 84380300 Hole No:

							02 84380300 02 84380310		Hole N	0:	BH17
									Sheet:		PAGE 1 / 1
Clie	ent:			Richard	d Hall				Starteo	1:	11/09/17
Pro	oject	t:		Propos	ed Re	sider	tial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	ach R	load,	Berry		Logged	d:	TPR
				GPS (-)				Checke	ed:	VDS
Eq	uipn	nent T	ype		l	Dingo	o drill Rig		RL Sur	face:	
Во	rehc	ole Dia	met	er: 100)(O.D.)		Inclination:	Bearing:	Datum	:	
							Material Description				comments
-	<u>ر</u>	tests	swo	Ê	bo	loqu			o ne	ensity	
letho	wate	nples, etc	CP BI r 150	epth (aphic	CS sy			Aoistu	nsiste tive d	
5		san	<u>ŏ ĕ</u>	σ	- D	NS			20	CO	and additional
											Observations
	Itered	D				CL/CI	Silty CLAY, low to medium plasticity, brown, traces of gravel		≥Wp		FILL
	ncour										
	one E			_							-
	z										
	-			_							_
		D									
				_							-
⊢						CL/CI	Silty CLAY, low to medium plasticity, grey mottled orange				
AD.				_							_
		D									
				1.0							
						сі/сн	Silty CLAY, medium to high plasticity, grey		>Wp		RESIDUAL
				_							_
				_							_
		D									
			1			1	BH17 Terminated at 1.5 m				
				_							-
				_							_
				2.0							
				_							_
				_							
				_							_
				_							

BOREHOLE LOG LOGS.GPJ NETWORK GEOTECHNICS PTY LTD.GDT 9/25/17

G09/2571

- U2 84380300 02 84380310									Hole No: BH18		
									Sheet:		PAGE 1 / 1
Cli	ent:			Richard	d Hall				Starteo	1:	11/09/17
Pro	ojec	t:		Propos	ed Re	sider	ntial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	ach R	load,	Berry		Logged	1:	TPR
				GPS (-)				Checke	ed:	VDS
Eq	uipn	nent T	ype:			Dingo	o drill Rig		RL Sur	face:	
Во	reho	ole Dia	met	er: 100)(O.D.)	-	Inclination: Beari	ing:	Datum	:	
		(0				_	Material Description			×	comments
p	ਯ	i, test	lows mm	(L	c log	ymbo			ure tion	ency/	
netho	wat	nples etc	CP B er 150	depth	raphi	SCS s			Moist	onsist ative o	notes structure
		sa		-	0	۳ ۳				C el	and additional observations
	70				·		Silty CLAV, low plasticity, brown, traces of gravel		> 14/m		
	ntere	D			· // · չ /				Zvvp		
	Encou				<u>. \ 1</u> /						
	Jone F			_		СІ/СН	CLAY, medium to high plasticity, grey mottled orange-brown and red, some silt				RESIDUAL
	2										
			$\left\{ \right\}$	_							_
1 1		D									
AI											
				_							_
				_							-
		D		10							
] [1.9			BH18 Terminated at 1 m				
				_							-
				_							_
				_							_
											_
				_							_
				2.0							
				_							
				_							_
											_
				_							
	·		·								

G09/2571

		02 84380310								0:	BH19	
									Sheet:		PAGE 1 / 1	
CI	ient:			Richard	d Hall				Started	1:	11/09/17	
Pr	ojec	:t:		Propos	ed Re	sider	tial Subdivision		Finishe	ed:	11/09/17	
Lo	cati	on:		510 Be	ach R	load,	Berry		Logge	d:	TPR	
				GPS (-)				Check	ed:	VDS	
E	nuipr	ment T	vpe			Ding	o drill Rig		RL Sur	face:		
B	orehole Diameter: 100(0.D.) Inclination: Bearing:								Datum:			
-				.01.			Material Description					
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations	
	ered	D			<u></u>	CL	Silty CLAY, low plasticity, brown, traces of gravel		>Wp		TOPSOIL	
ADT	ADT None Encounter										-	
						СИСН	CLAY, medium to high plasticity, grey motiled orange-brow	n and red, some slit				
		D										
							BH19 Terminated at 0.5 m					
											-	
				1.0								
				_								
											_	
DT 9/25/17											_	
S PTY LTD.G				2.0								
GEOTECHNIC				_								
J NETWORK				_							-	
G LOGS.GP.				_							-	
BOREHOLE LO												

G09/2571

							02 84380300 02 84380310			0:	BH20		
									Sheet:		PAGE 1 / 1		
Cli	ent:			Richard	d Hall				Started	l:	11/09/17		
Pro	oject	t:		Propos	ed Re	sider	tial Subdivision		Finishe	ed:	11/09/17		
Lo	catio	on:		510 Be	ach R	load,	Berry		Logged	1:	TPR		
				GPS (-)				Checke	ed:	VDS		
Eq	uipn	nent T	ype:	:	I	Dingo	o drill Rig		RL Sur	RL Surface:			
Во	rehc	ole Dia	met	er: 100)(O.D.)		Inclination:	Bearing:	Datum	:			
							Material Description				comments		
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations		
	ered	D			<u></u>	CL	Silty CLAY, low plasticity, brown, traces of gravel		≥Wp		TOPSOIL		
	None Encounte		-	_									
		D				CI/CH	CLAY, medium to high plasticity, grey mottled orange, some silt				RESIDUAL		
AD'			1										
				_							-		
		D		1.0									
				1.0			BH20 Terminated at 1 m						
				_							_		
				_							_		
				_							_		
				_							_		
				2.0									
				2.0									
			-	_							-		
				_							_		
				_									
				_							_		

G09/2571

							02 843 02 843	380300 380310	Hole N	o:	BH21
									Sheet:		PAGE 1 / 1
CI	ient:			Richard	d Hall				Started	l:	11/09/17
Pr	oiec	st:		Propose	ed Re	sider	tial Subdivision		Finishe	ed:	11/09/17
	cati	on:		510 Be	ach R	load	Berry		Logged	d:	TPR
	outr	0111		GPS (-))	,			Checke	ed:	VDS
E	uuinar	mont T				Ding	drill Pig		DI Sur	face	
	Equipinent Type: Dingo dimiting								Detum		
БС			amet	er. 100	10.0.)			Dearing.	Datum		
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Matenai Description		Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	untered	D			<u>17</u> .77.1	CL	Silty CLAY, low plasticity, brown, traces of gravel		≤Wp		TOPSOIL
	CI/CH CLAY, medium to high plasticity, grey mottled grey m					СІ/СН	CLAY, medium to high plasticity, grey mottled grey mottled ora	ange, some silt	-		RESIDUAL
ADT	None										
				_	<u> </u>	-	SHALE, extremely weathered, orange brown		-		WEATHERED ROCK
		D									
							BH21 Terminated at 0.5 m				
				_							-
				_							-
				10							
				1.0							
				_							-
				_							-
				_							-
5/17											
T 9/2											
D.GD				_							-
L ∠											
CS P				2.0							
CHN											
EOTE											
RK G				_							-
OWL											
NE C				_							-
SS.GF											
LOC											
POG											_
HOLE											
BORE											

G09/2571

							380310	Hole N	0:	BH22	
									Sheet:		PAGE 1 / 1
C	ient:			Richard	d Hall				Started	1:	11/09/17
Pi	ojec	xt:		Propos	ed Re	siden	tial Subdivision		Finishe	ed:	11/09/17
Lo	ocati	on:		510 Be	ach R	load,	Berry		Logge	d:	TPR
				GPS (-)				Check	ed:	VDS
E	nuipi	ment T	vpe	•		Dingo	odrill Rig		RL Sur	face:	
B	oreh	ole Dia	me	er: 100	(O.D.)	5	Inclination:	Bearing:	Datum	:	
-				.01.			Material Description				
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	ered	D			. <u>x, 1</u> ,	CL	Silty CLAY, low plasticity, brown, traces of gravel		≤Wp		TOPSOIL
	counte				<u>// · · · · · · · · · · · · · · · · · · </u>						
ADT	None En			_		CI/CH	CLAY, medium to high plasticity, grey mottled orange, some s	ilt			RESIDUAL _
		D		_							-
							BH22 Terminated at 0.5 m				
				_							-
				_							-
				1.0							
				_							_
				_							
9/25/17				_							-
PTY LTD.GDT				- 20							-
EOTECHNICS				2.0							
NETWORK G											
LOGS.GPJ				_							_
BOREHOLE LOG				_							-

G09/2571

02 84380300 02 84380310									Hole No: BH23				
Cliv	ont:			Richard	1 Hall				Sheet:		PAGE 1 / 1		
Dro		+•		Propos		sider	tial Subdivision		Finishe		11/09/17		
	ratic	 		510 Be	ach R	oad	Berry		Logaeo	l:	TPR		
	June			GPS (-))	iouu,			Checke	ed:	VDS		
Fα	uinn	nent T	vne			Dinac) drill Ria		RL Sur	face:			
Bo	reho		met	er: 100	(O.D.)	Dilige	Inclination:	Bearing:	Datum:				
		Motorial Description											
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations		
	ered	D			. <u></u> .	CL	Silty CLAY, low plasticity, brown, traces of gravel		≥Wp		TOPSOIL		
	Icount												
ADT	None Er					CI/CH	CLAY, medium to high plasticity, grey mottled orange, some silt		_		RESIDUAL		
		D	1	_							_		
			1				BH23 Terminated at 0.5 m						
											_		
				10									
				_									
											_		
				2.0									
											_		
											_		

G09/2571

							02 84380300 02 84380310		Hole No: BH24			
									Sheet:	I	PAGE 1 / 1	
Clie	ent:			Richard	d Hall				Started	:	11/09/17	
Pro	oject	t:		Propose	ed Re	siden	tial Subdivision		Finishe	ed:	11/09/17	
Lo	catio	on:		510 Be	ach R	load,	Berry		Loggeo	1:	TPR	
				GPS (-))				Checke	ed:	VDS	
Eq	uipn	nent T	ype			Dingo	o drill Rig		RL Sur	face:		
Во	reho	ole Dia	met	er: 100	(O.D.)		Inclination:	Bearing:	Datum			
							Material Description				comments	
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations	
	ered	D			<u></u>	CL	Silty CLAY, low plasticity, brown, traces of gravel		≥Wp		TOPSOIL	
	Encounte				<u></u>							
ADT	None					CI/CH	CLAY, medium to high plasticity, grey mottled orange, some silt				RESIDUAL	
	-	D										
							BH24 Terminated at 0.5 m					
				_							_	
				_							_	
				1.0								
											_	
				_							_	
											_	
											-	
				2.0								
											_	
				_							_	
				_								

G09/2571

02 84380300 02 84380310									Hole No: BH25					
	Client: Bichard Hall										PAGE 1 / 1			
Dre		ŀ•		Propos		sidon	tial Subdivision		Finishe		11/09/17			
	ratio	 		510 Be	ach R	oad	Berry		Logaed	1:	TPR			
	June	/1.		GPS (-))	ouu,	2011		Checke	ed:	VDS			
Fα	uinn	nent T	vne			Dinac	o drill Ria		RL Sur	face:				
Bo	reho	ole Dia	met	er: 100	(O.D.)		Inclination:	Bearing:	Datum	Datum:				
							Material Description				comments			
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations			
	ountered	D	-		17 · 77 · 1	CL	Silty CLAY, low plasticity, brown, traces of gravel		≥Wp		TOPSOIL			
	e Enco			_					_					
ADT	Non					CI/CH	CLAY, medium to high plasticity, grey mottled orange, some silt				RESIDUAL			
		D		_		- 					_			
							BH25 Terminated at 0.5 m							
											_			
				_										
				1.0										
				_							_			
				_							_			
											_			
				2.0										
				_										

G09/2571

							02 84380300 02 84380310		Hole N	0:	BH26
									Sheet:	l	PAGE 1 / 1
Clie	ent:			Richard	Hall				Started	:	11/09/17
Pro	oject	t:		Propose	ed Re	sider	tial Subdivision		Finishe	d:	11/09/17
Loc	catio	n:		510 Be	ach R	oad,	Berry		Logged	l:	TPR
				GPS (-))				Checke	ed:	VDS
Eq	uipn	nent T	ype:	:	[Dingo	o drill Rig		RL Sur	face:	
Bo	rehc	le Dia	met	er: 100	(O.D.)		Inclination:	Bearing:	Datum:		
							Material Description				comments
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations
	Encountered	D			1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	CL	Silty CLAY, low plasticity, brown, traces of gravel		≥Wp		TOPSOIL
	None					CI/CH	CLAY, medium to high plasticity, grey mottled orange, some silt				RESIDUAL
ADT	-	D									
						-	SHALE, extremely weathered, brown		-		WEATHERED ROCK
				1.0			BH26 Terminated at 1 m				
				_							_
											_
				20							_
				_							_
											_
				<u> </u>							_
											_

G09/2571

							02 843 02 843	380300 380310	н	lole N	0:	BH27	
									s	Sheet:		PAGE 1 / 1	
Cli	ent:			Richard	d Hall				s	Started	1:	11/09/17	
Pr	oiec	xt:		Propos	ed Re	sider	tial Subdivision		F	inishe	ed:	11/09/17	
Lo	cati	on:		510 Be	ach R	load.	Berry		L	oggeo	d:	TPR	
				GPS (-)	,	,		c	Checke	ed:	VDS	
Fo	uuinr	ment T	Vno			Dina	drill Rig		B	RI Sur	face:		
	Borehole Diameter: 100(O.D.) Inclination: Bearing:									Datum:			
DU	Material Description									Jatum			
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	watenai Description		:	Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations	
	ered	D			<u></u>	CL	Silty CLAY, low plasticity, brown, traces of gravel		2	<u>≥</u> Wp		TOPSOIL	
	counte												
.	le Enc			_									
ADT	Non					-	SHALE, externely weathered, blown			-		WEATHERED ROCK	
					[
		D			E	ł						-	
							BH27 Terminated at 0.5 m						
				_								-	
				_								_	
				1.0									
				_								-	
				_								-	
~				_								-	
9/25/1													
SDT				_								-	
Ē													
ΓL				2.0									
NICS				2.0									
TECH													
GEO												-	
0RK													
VE TV													
L L L L				_								-	
GS.G													
0 C				_								-	
μĒ													
EHOI													
BOR												_	

G09/2571

							380310	Hole No: BH28			
									Sheet:		PAGE 1 / 1
С	lient			Richard	d Hall				Started	1:	11/09/17
P	rojec	xt:		Propos	ed Re	siden	tial Subdivision		Finishe	ed:	11/09/17
Lo	ocati	on:		510 Be	ach R	load,	Berry		Logge	d:	TPR
				GPS (-)				Check	ed:	VDS
E	auipi	ment T	vpe	•		Dingo	odrill Rig		RL Sur	face:	
B	oreh	ole Dia	me	ter: 100	(O.D.)	5	Inclination:	Bearing:	Datum	:	
H				.01.			Material Description				
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations
	ered	D			. <u>×1 /v</u> .	CL	Silty CLAY, low plasticity, brown, traces of gravel		≤Wp		TOPSOIL
	counte				[/						
ADT	None En			_		CI/CH	CLAY, medium to high plasticity, grey mottled orange, some s	silt			RESIDUAL _
		D		_							-
							BH28 Terminated at 0.5 m				
				_							-
											_
				1.0							
											_
											-
9/25/17											-
TY LTD.GDT											-
CHNICS F				2.0							
ORK GEOTE				_							-
D NETW				_							-
G LOGS.GF				_							_
BOREHOLE LOC				_							-

G09/2571

		02 84380300 02 84380310							Hole N	0:	BH29
									Sheet:		PAGE 1 / 1
Cli	ent:			Richard	d Hall				Started	1:	11/09/17
Pro	ojec	:t:		Propos	ed Re	sider	tial Subdivision		Finishe	ed:	11/09/17
Lo	catio	on:		510 Be	ach R	oad,	Berry		Logge	d:	TPR
				GPS (-))				Check	ed:	VDS
Fα	uipr	nent T	vpe			Dingo	odrill Rig		RL Sur	face:	
Bo	reh	ole Dia	met	er 100)(O.D.)		Inclination:	Bearing:	Datum	:	
							Material Description		-		
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	ered	D			<u> </u>	CL	Silty CLAY, low plasticity, brown, traces of gravel		≤Wp		TOPSOIL
ADT	None Encounter			_							-
		D				-	SHALE, extremely weathered, brown		-		WEATHERED ROCK
			1				BH29 Terminated at 0.5 m				
				_							-
				1.0							
				_							_
											_
				2.0							
											_
											-
											_

G09/2571

				-			02 843803 02 843803	00 10	Hole N	0:	BH30
									Sheet:		PAGE 1 / 1
Clie	ent:			Richard	d Hall				Started	1:	11/09/17
Pro	ject			Propos	ed Re	sider	tial Subdivision		Finishe	ed:	11/09/17
Loc	atic	n:		510 Be	ach R	load,	Berry		Logged	d:	TPR
				GPS (-)				Check	ed:	VDS
Eq	uipn	nent T	ype	:	l	Dingo	o drill Rig		RL Sur	face:	
Boi	ehc	le Dia	met	ter: 100	(O.D.)		Inclination:	Bearing:	Datum	:	
							Material Description				comments
ą	ъ	, tests	ows	(E	c log	ymbo			ure	ency/ lensit	
netho	wate	nples etc	CP B er 150	lepth	raphic	CSS			Moist	onsist ative c	notes structure
2		sar	Δæ		D	SU				Lela CC	and additional observations
	8				·		Silty CLAX low plasticity brown traces of gravel		> 14/=		
	Intered	D			1/	UL	Sing CLAT, low plasticity, blown, liaces of graver		>vvp		
	Encou				. <u>\ 1</u> /						
	None I			_	<u> </u>	-	SHALE, extremely weathered, brown				_
	2				F_						
	-		-	_	E						-
DT	-	D	_		<u>[</u>						
∢				_	E						_
					E						
					<u> </u>						
				_	<u> </u>						_
	-		-		E						
		D		1.0	<u> </u>		PU20 Terminated at 1 m		_		
				_							_
				_							_
				_							_
											_
				2.0							
											WEATHERED ROOK
				-							
				L							_
				_							

Appendix D

Summary of Laboratory Test Results

				Description Sample Date	BH1 0-0.1 11/9/2017 Soil	BH2 0-0.1 11/9/2017 Soil	BH3 0-0.1 11/9/2017 Soil	BH4 0-0.1 11/9/2017 Soil	BH5 0-0.1 11/9/2017 Soil	BH5 0.9-1.0 11/9/2017 Soil	BH5 1.4-1.5 11/9/2017 Soil	BH6 0.4-0.5 11/9/2017 Soil	BH6 1.4-1.5 11/9/2017 Soil	BH7 0-0.1 11/9/2017 Soil	BH7 0.4-0.5 12/9/2017 Soil	BH7 0.9-1.0 11/9/2017 Soil	BH7 1.4-1.5 12/9/2017 Soil	BH8 0-0.1 11/9/2017 Soil	BH9 0-0.1 11/9/2017 Soil	BH10 0-0.1 11/9/2017 Soil	BH11 0-0.1 11/9/2017 Soil	BH13 0-0.1 11/9/2017 Soil	BH14 0.4-0.5 12/9/2017 Soil	BH15 0-0.1 12/9/2017 Soil	BH16 0.4-0.5 12/9/2017 Soil	BH17 0.4-0.5 12/9/2017 Soil	BH19 0-0.1 12/9/2017 Soil	BH20 0.9-1.0 12/9/2017 Soil	BH22 0-0.1 12/9/2017 Soil	BH25 0.4 12/9/20 Soil
Analyte Name	Units	HIL/HSL	EIL/ESL	Reporting Limit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Resul
.nzene Iuene	mg/kg mg/kg	0.5 160	50/65 85/105	0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 N.A.	<0.1 <0.1	<0.1 N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.
hylbenzene tal Xylenes	mg/kg	55 40	70/125	0.1	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
ital BTEX	mg/kg	-	-	0.6	N.A.	<0.6	N.A.	N.A.	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	N.A.	<0.6	N.A.	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	N.A.	<0.6	N.A.	N.A.	<0.6	N.A.	N.A.
aphthalene enzene (F0)	mg/kg ma/ka	3	170	0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A.
RH C6-C9	mg/kg	-		20	N.A.	<20	N.A.	N.A.	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	N.A.	<20	N.A.	N.A.	<20	N.A.	N.A.
RH C6-C10 RH C6-C10 minus BTEX (F1)	mg/kg mg/kg	45-50	180	25 25	N.A. N.A.	<25 <25	N.A. N.A.	N.A. N.A.	<25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	N.A. N.A.	<25 <25	N.A. N.A.	N.A. N.A.	<25 <25	N.A. N.A.	N.A. N.A.
RH C10-C14 RH C15-C28	mg/kg mg/kg			20 45	N.A.	<20	N.A.	N.A.	<20 <45	<20 <45	<20	<20 <45	<20 <45	22 340	<20 530	<20 590	<20 <45	<20 <45	<20 <45	<20 <45	<20 <45	<20 <45	<20	N.A.	<20 <45	N.A.	N.A.	<20 <45	N.A.	N.A.
RH C29-C36	mg/kg	-		45	N.A.	<45	N.A.	N.A.	<45	<45	<45	<45	<45	650	1300	1500	<45	<45	<45	<45	<45	<45	<45	N.A.	<45	N.A.	N.A.	<45	N.A.	N.A.
RH C37-C40 RH >C10-C16 (F2)	mg/kg mg/kg	- 110-280	120	100 25	N.A. N.A.	<100 <25	N.A. N.A.	N.A. N.A.	<100 <25	<100 <25	<100 <25	<100 <25	<100 <25	110 25	330 <25	320 <25	<100 <25	<100 <25	<100 <25	<100 <25	<100 <25	<100 <25	<100 <25	N.A. N.A.	<100 <25	N.A. N.A.	N.A. N.A.	<100 <25	N.A. N.A.	N.A. N.A.
RH >C10-C16 (F2) - Naphthalene	mg/kg	110-280	120	25	N.A.	<25	N.A.	N.A.	<25	<25	<25	<25	<25	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	N.A.	<25	N.A.	N.A.	<25	N.A.	N.A.
RH >C34-C40 (F4)	mg/kg	1	2800/5600	120	N.A.	<120	N.A.	N.A.	<120	<120	<120	<120	<120	320	750	790	<120	<120	<120	<120	<120	<120	<120	N.A.	<120	N.A.	N.A.	<120	N.A.	N.A.
RH C10-C36 Total RH C10-C40 Total	mg/kg ma/ka	1.1		110 210	N.A. N.A.	<110 <210	N.A. N.A.	N.A. N.A.	<110 <210	<110 <210	<110 <210	<110 <210	<110 <210	1000 1100	1800 2100	2100 2400	<110 <210	<110 <210	<110 <210	<110 <210	<110 <210	<110 <210	<110 <210	N.A. N.A.	<110 <210	N.A. N.A.	N.A. N.A.	<110 <210	N.A. N.A.	N.A.
aphthalene	mg/kg	3	170	0.1	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
methylnaphthalene	mg/kg mg/kg	1	1	0.1	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
enaphthylene	mg/kg ma/ka	1	1	0.1	N.A. N.A	<0.1 <0.1	N.A. N.A	N.A. N.A	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A	<0.1 <0.1	N.A. N.A	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A	<0.1 <0.1	N.A. N.A	N.A. N.A	<0.1 <0.1	N.A. N A	N.A. N A
Jorene	mg/kg	-	-	0.1	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
tenanthrene thracene	mg/kg mg/kg	1	1.1	0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.
uoranthene	mg/kg	-	-	0.1	N.A.	< 0.1	N.A.	N.A.	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
enzo(a)anthracene	mg/kg	1	1	0.1	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
nrysene enzo(b&i)fluoranthene	mg/kg ma/ka	1.1		0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A.
enzo(k)fluoranthene	mg/kg	-	-	0.1	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
deno(1,2,3-cd)pyrene	mg/kg mg/kg	1	-	0.1	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
benzo(ah)anthracene	mg/kg mg/kg			0.1	N.A.	<0.1 <0.1	N.A.	N.A.	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.
arcinogenic PAHs, BaP TEQ	TEQ (mg/kg)	3		0.3	N.A.	<0.3	N.A.	N.A.	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	N.A.	<0.3	N.A.	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	N.A.	<0.3	N.A.	N.A.	<0.3	N.A.	N.A.
exachlorobenzene (HCB)	mg/kg mg/kg	- 300	1.1	0.8	N.A. N.A.	<0.8 <0.1	N.A. N.A.	N.A. N.A.	<0.8 N.A.	<0.8 N.A.	<0.8 N.A.	<0.8 N.A.	<0.8 N.A.	<0.8 N.A.	N.A. N.A.	<0.8 N.A.	N.A. N.A.	<0.8	<0.8	<0.8 N.A.	<0.8	<0.8 N.A.	<0.8 N.A.	N.A. <0.1	<0.8 N.A.	N.A. <0.1	N.A. <0.1	<0.8 N.A.	N.A. N.A.	N.A. <0.1
oha BHC	mg/kg ma/ka	1.1		0.1	N.A.	<0.1 <0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1 <0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1 <0.1	<0.1	N.A.	N.A.	<0.1
eptachlor	mg/kg	-		0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	<0.1	N.A.	N.A.	<0.1
drin eta BHC	mg/kg mg/kg	1	1.1	0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1
elta BHC	mg/kg	-	-	0.1	N.A.	< 0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	< 0.1	N.A.	<0.1	N.A.	N.A.	< 0.1	N.A.	< 0.1	< 0.1	N.A.	N.A.	< 0.1
p'-DDE	mg/kg	1	1	0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	<0.1	N.A.	N.A.	<0.1
oha Endosulfan amma Chlordane	mg/kg ma/ka	1.1		0.2	N.A. N.A.	<0.2 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.1	<0.2 <0.1	N.A. N.A.	<0.2 <0.1	N.A. N.A.	N.A. N.A.	<0.2 <0.1	N.A. N.A.	<0.2 <0.1	<0.2 <0.1	N.A. N.A.	N.A. N.A.	<0.2 <0.1
pha Chlordane	mg/kg	-		0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	<0.1	N.A.	N.A.	< 0.1
p'-DDE	mg/kg mg/kg	1	1	0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A. N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	<0.1	N.A.	N.A. N.A.	<0.1	N.A.	<0.1	<0.1	N.A.	N.A.	<0.1
eldrin adrin	mg/kg ma/ka	1	1	0.2	N.A. N.A	<0.2 <0.2	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	<0.2 <0.2	<0.2 <0.2	N.A. N.A	<0.2 <0.2	N.A. N A	N.A. N.A	<0.2 <0.2	N.A. N A	<0.2 <0.2	<0.2 <0.2	N.A. N A	N.A. N.A	<0.2 <0.2
p'-DDD	mg/kg	-	-	0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	<0.1	N.A.	N.A.	<0.1
eta Endosulfan	mg/kg mg/kg	1	-	0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A. N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	<0.1	N.A.	N.A. N.A.	<0.1	N.A.	<0.1	<0.1	N.A.	N.A.	<0.1
p'-DDD p'-DDT	mg/kg ma/ka	1	- 180	0.1	N.A. N.A	<0.1 <0.1	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N A	N.A. N A	N.A. N A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	<0.1 <0.1	<0.1 <0.1	N.A. N.A	<0.1 <0.1	N.A. N A	N.A. N A	<0.1 <0.1	N.A. N A	<0.1 <0.1	<0.1 <0.1	N.A. N A	N.A. N.A	<0.1 <0.1
ndosulfan sulphate	mg/kg	-	-	0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	<0.1	N.A.	N.A.	<0.1
idrin Aldenyde ethoxychlor	mg/kg mg/kg	300	1.1	0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	<0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	N.A. N.A.	<0.1 <0.1
ndrin Ketone	mg/kg mg/kg			0.1	N.A.	<0.1 <0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1 <0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1 <0.1	<0.1	N.A.	N.A.	<0.1
rex	mg/kg	10		0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	<0.1	N.A.	N.A.	<0.1
ital CLP OC Pesticides chlorvos	mg/kg mg/kg	1	1	1 0.5	N.A. N.A.	<1 <0.5	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<1 <0.5	<1 <0.5	N.A. N.A.	<1 <0.5	N.A. N.A.	N.A. N.A.	<1 <0.5	N.A. N.A.	<1 <0.5	<1 <0.5	N.A. N.A.	N.A. N.A.	<1 <0.5
methoate	mg/kg	-	-	0.5	N.A.	< 0.5	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.5	< 0.5	N.A.	<0.5	N.A.	N.A.	<0.5	N.A.	< 0.5	< 0.5	N.A.	N.A.	< 0.5
nitrothion	mg/kg	1	1	0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	<0.2	N.A.	<0.2	N.A.	N.A.	<0.2	N.A.	<0.2	<0.2	N.A.	N.A.	<0.2
alathion Norpyrifos (Chlorpyrifos Ethyl)	mg/kg ma/ka	160 -		0.2	N.A. N.A.	<0.2 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.2	<0.2 <0.2	N.A. N.A.	<0.2 <0.2	N.A. N.A.	N.A. N.A.	<0.2 <0.2	N.A. N.A.	<0.2 <0.2	<0.2 <0.2	N.A. N.A.	N.A. N.A.	<0.2 <0.2
arathion-ethyl (Parathion)	mg/kg	-		0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	< 0.2	N.A.	<0.2	N.A.	N.A.	<0.2	N.A.	<0.2	< 0.2	N.A.	N.A.	<0.2
ethidathion	mg/kg mg/kg	1	1	0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A. N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	< 0.2	N.A.	<0.2	N.A.	N.A. N.A.	<0.2	N.A.	<0.2	<0.2	N.A.	N.A.	<0.2
hion (inphos-methyl (Guthion)	mg/kg ma/ka			0.2 0.2	N.A. N.A	<0.2 <0.2	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	<0.2 <0.2	<0.2 <0.2	N.A. N.A	<0.2 <0.2	N.A. N.A	N.A. N.A	<0.2 <0.2	N.A. N.A	<0.2 <0.2	<0.2 <0.2	N.A. N.A	N.A. N.A	<0.2 <0.2
tal OP Pesticides	mg/kg		-	1.7	N.A.	<1.7	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<1.7	<1.7	N.A.	<1.7	N.A.	N.A.	<1.7	N.A.	<1.7	<1.7	N.A.	N.A.	<1.7
senic, As admium, Cd	mg/kg mg/kg	100 20	100	1 0.3	4 0.4	3 0.5	3 0.4	<1 <0.3	<1 0.3	2 0.6	2 0.8	2 0.6	2 0.8	<1 0.3	N.A. N.A.	2 0.6	N.A. N.A.	2 0.6	3 0.5	N.A. N.A.	1 0.4	3 1.1	<1 <0.3	<1 <0.3	<1 <0.3	<1 <0.3	<1 <0.3	3 0.9	6 0.9	1 0.5
nromium, Cr	mg/kg mg/kg	100	190 60	0.5	12 34	18 14	16 32	10	15	35 11	35 11	33 14	34 19	10 7 9	N.A.	34	N.A.	25 14	21	N.A.	17 30	16 49	11 3.0	10	11 8 0	4.4 3.0	3.5	25 12	12	14 8 9
ad, Pb	mg/kg	300	1100	1	10	10	11	21	10	15	14	15	15	31	N.A.	16	N.A.	37	14	N.A.	14	330	8	10	10	5	3	16	15	9
ckel, Ni nc, Zn	mg/kg mg/kg	400 7400	30 110	0.5 2	4.9 33	4.0 18	7.5 52	1.8 27	2.0 17	2.5 23	1.6 15	2.5 27	1.6 18	2.3 320	N.A. N.A.	2.6 67	N.A. N.A.	2.5 85	2.5 14	N.A. N.A.	7.8 110	9.5 280	1.4 7	1.7 12	2.3 13	1.2 5	0.6 3	2.8 17	1.8 12	1.5 8
ercury	mg/kg	40 Detection		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	N.A.	<0.05	N.A.	<0.05	<0.05	N.A.	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
timated Fibres	%w/w	-		0.01	<0.01	N.A.	<0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.01	<0.01	<0.01	<0.01	<0.01	N.A.	N.A.	N.A.	N.A.

9-1.0)17	BH22 0-0.1 12/9/2017 Soil	BH25 0.4-0.5 12/9/2017 Soil	BH27 0-0.1 12/9/2017 Soil	BH29 0-0.1 12/9/2017 Soil	BH30 0.9-1.0 12/9/2017 Soil	BH130 0.9-1.0 12/9/2017 Soil	BH120 0.9-1.0 12/9/2017 Soil	DW1 12/9/2017 Water	DW2 12/9/2017 Water	Trip Spike 12/9/2017 Soil	Trip Blank 12/9/2017 Soil
tt	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	[85%]	<0.1
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	[89%]	<0.1
	N.A.	N.A.	N.A.	N.A.	<0.3	< 0.3	<0.3	N.A.	N.A.	N.A.	<0.3
	N.A.	N.A.	N.A.	N.A.	<0.6	<0.6	<0.6	N.A.	N.A.	N.A.	<0.6
	N.A.	N.A.	N.A.	N.A.	< 0.1	< 0.1	< 0.1	N.A.	N.A.	N.A.	<0.1
	N.A.	N.A.	N.A.	N.A.	<0.1	<20	<20	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<25	<25	<25	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<25	<25	<25	N.A.	N.A.	N.A.	N.A.
	N.A. N.A	N.A. N A	N.A. N.A	N.A. N.A	<20 <45	<20 <45	<20	N.A. N.A	N.A. N.A	N.A. N A	N.A. N.A
	N.A.	N.A.	N.A.	N.A.	<45	<45	<45	N.A.	N.A.	N.A.	N.A.
)	N.A.	N.A.	N.A.	N.A.	<100	<100	<100	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<25	<25	<25	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<90	<90	<90	N.A.	N.A.	N.A.	N.A.
)	N.A.	N.A.	N.A.	N.A.	<120	<120	<120	N.A.	N.A.	N.A.	N.A.
)	N.A.	N.A.	N.A.	N.A.	<110	<110	<110	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	< 0.1	< 0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	< 0.1	< 0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	< 0.1	< 0.1	< 0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A. N.A	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A. N A	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.3	<0.3	<0.3	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	<0.8	<0.8	<0.8	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A. N.A	<0.1	N.A. N.A	<0.1	N.A.	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<1	N.A.	<1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	< 0.5	N.A.	< 0.5	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.5	N.A.	<0.5	N.A.	N.A.	N.A.	N.A.	N.A.	N.A. N.A	N.A.
	N.A.	<0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A. N.A	<0.2	N.A. N.A	<0.2	N.A.	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A
	N.A.	<0.2	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.5	N.A.	<0.5	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	<0.2	N.A. N ∆	<0.2 <0.2	N.A. N A	N.A. N A	N.A. N A	N.A. N A	N.A. N A	N.A. N A	N.A. N A
	N.A.	<1.7	N.A.	<1.7	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	6	1	5	2	2	2	2	N.A.	N.A.	N.A.	N.A.
	0.9	0.5	0.7	0.6 1e	0.4 24	0.5 24	0.9 24	N.A.	N.A.	N.A.	N.A.
	5.0	6.3	15	8.1	26	25	11	N.A.	N.A.	N.A.	N.A.
	15	9	11	10	10	10	12	N.A.	N.A.	N.A.	N.A.
	1.8	1.5	6.1	6.5	8.6	8.1	2.4	N.A.	N.A.	N.A.	N.A.
5	12 <0.05	<0.05	<0.05	<0.05	<0.05	49 <0.05	<0.05	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

		Column3			
			Description Sample Date	DW1 12/9/2017	DW2 12/9/2017
			Matrix	Water	Water
Analyte Name	Units	Trigger Value	Reporting Limit	Result	Result
Benzene	µg/L	950	0.5	<0.5	< 0.5
Fthylbenzene	µg/L ug/l		0.5	<0.5	<0.5
m/p-xylene	µg/L	ID	1	<1	<1
o-xylene	μg/L	350	0.5	<0.5	<0.5
Total Xylenes	µg/L	-	1.5	<1.5	<1.5
Total BTEX	µg/L	-	3	<3	<3
Naphthalene	µg/L	16	0.5	<0.5	<0.5
TRH C6-C9	µg/L	-	40	<40	<40
Benzene (F0)	µg/L	-	0.5	<0.5	<0.5
TRH C6-C10	µg/L	-	50	<50 <50	<50
	µg/L		50	<50	<50
TRH C15-C28	ua/l	_	200	<200	<200
TRH C29-C36	μg/L	_	200	<200	<200
TRH C37-C40	μg/L	-	200	<200	<200
TRH >C10-C16 (F2)	µg/L	-	60	<60	<60
TRH >C16-C34 (F3)	µg/L	-	500	<500	<500
TRH >C34-C40 (F4)	µg/L		500	<500	<500
TRH C10-C36	µg/L	-	450	<450	<450
TRH C10-C40	µg/L	-	650	<650	<650
TRH >C10-C16 (F2) - Naphthalene	µg/L	-	60	<60	<60
Naphthalene	µg/L	16	0.1	<0.1	< 0.1
	µg/L		0.1	<0.1	<0.1
Acenaphthylene	μy/L ug/l		0.1	<0.1	<0.1 <0.1
Acenaphthene	µg/L		0.1	<0.1	<0.1
Fluorene	ua/L	_	0.1	<0.1	<0.1
Phenanthrene	μg/L	ID	0.1	<0.1	<0.1
Anthracene	μg/L	ID	0.1	<0.1	<0.1
Fluoranthene	µg/L	ID	0.1	<0.1	<0.1
Pyrene	µg/L	-	0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L		0.1	<0.1	<0.1
Chrysene	µg/L	-	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	-	0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	-	0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	U	0.1	<0.1	<0.1
ndeno(1,2,3-cd)pyrene	µg/L	-	0.1	<0.1	< 0.1
Benzo(ahi)pen/lene	µg/L µg/l		0.1	<0.1	<0.1
Total PAH (18)	ua/l	_	1	<1	<1
Hexachlorobenzene (HCB)	μg/L		0.1	<0.1	<0.1
Alpha BHC	μg/L	-	0.1	<0.1	<0.1
_indane (gamma BHC)	µg/L		0.1	<0.1	<0.1
Heptachlor	µg/L	-	0.1	<0.1	<0.1
Aldrin	µg/L	-	0.1	<0.1	<0.1
Beta BHC	µg/L	-	0.1	<0.1	<0.1
Delta BHC	µg/L	-	0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	-	0.1	<0.1	<0.1
),p-DDE Noba Endosulfan	µg/L		0.1	<0.1	< 0.1
	µg/L		0.1	<0.1	<0.1
Alpha Chlordane	µg/L ug/l		0.1	<0.1	<0.1
rans-Nonachlor	ua/L	_	0.1	<0.1	<0.1
p,p'-DDE	µg/L		0.1	<0.1	<0.1
Dieldrin	μg/L	-	0.1	<0.1	<0.1
Endrin	µg/L	-	0.1	<0.1	<0.1
p,p'-DDD	μg/L	-	0.1	<0.1	<0.1
o,p'-DDT	µg/L		0.1	<0.1	<0.1
Beta Endosulfan	µg/L		0.1	<0.1	<0.1
p,p'-DDD	µg/L	-	0.1	<0.1	<0.1
,p'-DDT	µg/L	-	0.1	<0.1	<0.1
Indosultan sulphate	µg/L	-	0.1	<0.1	< 0.1
Aethoxychlor	µg/L		0.1	<0.1	<0.1
Endrin ketone	µg/L		0.1	<0.1	<0.1
sodrin	ua/L	_	0.1	<0.1	<0.1
/irex	µg/L	_	0.1	<0.1	<0.1
Dichlorvos	μg/L		0.5	<0.5	<0.5
Dimethoate	µg/L		0.5	<0.5	<0.5
Diazinon (Dimpylate)	µg/L		0.5	<0.5	<0.5
enitrothion	µg/L		0.2	<0.2	<0.2
Alathion	µg/L		0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L		0.2	<0.2	<0.2
2arathion-ethyl (Parathion)	µg/L		0.2	< 0.2	<0.2
sromophos Ethyl	µg/L		0.2	<0.2	< 0.2
	μg/L		0.5	< 0.5	< 0.5
	µg/L		0.2	< 0.2	< 0.2
arenic As	µg/L	12	0.2	∿∪.2 1	<0.2 4
asenic, As Sadmium, Cd	μg/L	0.3	1 0 1	∎ <0.1	۲ د ۱ 1
Chromium, Cr	μy/L μα/l	0.5	0.1	<u>∽</u> 0.1	~∪.1 <1
Copper, Cu	μg/L μg/l	19	1	3	3
Lead, Pb	μg/L	5.2	1	<1	<1
lickel, Ni	μg/L	14.6	1	1	1
Zinc, Zn	μg/L	10.6	5	<5	<5
Mercury	mg/L		0.0001	<0.0001	<0.0001

Appendix E

Laboratory Analytical Report, Chain of Custody and Sample Receipt Documents

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Thalia Park-Ross	Manager	Adam Atkinson
Client	NETWORK GEOTECHNICS PTY LTD	Laboratory	SGS Melbourne EH&S
Address	31 Anvil Rd Seven Hills NSW 2147	Address	10/585 Blackburn Road Notting Hill Victoria 3168
Telephone	02 8438 0312 / 0411 112 824	Telephone	+61395743200
Facsimile	02 8438 0310	Facsimile	+61395743399
Email	tparkross@netgeo.com.au	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	G09/2571	SGS Reference	ME304135 R0
Order Number	G09/2571	Date Received	15 Sep 2017
Samples	2	Date Reported	20 Sep 2017

COMMENTS .

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES .

C. Thum

Chris Thurm Chemist

MING

Weiming Dai Inorganic Supervisor

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Bldg 10, 585 Blackburn Rd

Notting Hill VIC 3168

t +61 3 9574 3200 Australia f +61 3 9574 3399

www.sgs.com.au

ANALYTICAL REPORT

	Sar S S	nple Numbe ample Matrix Sample Date ample Name	ME304135.001 Soil 12 Sep 2017 BH220 0.9 - 1.0	ME304135.002 Soil 12 Sep 2017 BH230 0.9 - 1.0
Parameter	Units	LOR		
Moisture Content Method: AN002 Tested: 18/9/2017				
% Moisture*	%w/w	1	24.6	10.6

Metals in Solids Method: MA1400_1 Tested: 18/9/2017

Arsenic	mg/kg	2	<2	3
Cadmium	mg/kg	0.2	<0.2	<0.2
Chromium	mg/kg	2	6	11
Copper	mg/kg	2	3	16
Lead	mg/kg	2	7	8
Mercury	mg/kg	0.05	<0.05	<0.05
Nickel	mg/kg	2	<2	4
Zinc	mg/kg	2	2	26

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Solids Method: MA1400_1

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery	MSD %RPD
Arsenic	LB015702	mg/kg	2	<2	0%	107%	NA	NA
Cadmium	LB015702	mg/kg	0.2	<0.2	0%	107%	NA	NA
Chromium	LB015702	mg/kg	2	<2	0%	110%	NA	NA
Copper	LB015702	mg/kg	2	<2	0%	109%	NA	NA
Lead	LB015702	mg/kg	2	<2	2%	100%	NA	NA
Mercury	LB015702	mg/kg	0.05	<0.05	0%	100%	NA	NA
Nickel	LB015702	mg/kg	2	<2	0%	110%	NA	NA
Zinc	LB015702	mg/kg	2	<2	0%	100%	NA	NA

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC Reference	Units	LOR	DUP %RPD
% Moisture*	LB015703	%w/w	1	6%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
MA1400_1	A weighed portion of as received sample is extracted in concentrated acid using microwave heating by the Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered, centrifuged, or allowed to settle and analysed by ICP-MS.

FOOTNOTES _

L

IS	Insufficient sample for analysis.	LOR	Limit of Reporting	
NR	Sample listed, but not received.	↑↓	Raised or Lowered Limit of Reporting	
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance	
	performance of this service.	QFL	QC result is below the lower tolerance	
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte	
		NVL	Not Validated	

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

SGS				C	СНА	IN C	DF C	CUS	TOE	DY 8	& A1	NAL	YS	IS R	EQI	UES	бт						Page1_	of^	
SGS Environmental S	ervices	Compan	y Nam	ne:	Netw	ork G	eotech	nics Pi	y Ltd					Proje	ct Nan	ne/No:		GOS	/2571						
Unit 16, 33 Maddox St	reet	Address	:		Unit	12/9-1	5 Gund	dah Ro	ad, Mi	Kurin	g-Gai			Purch	nase O	order N	lo:								
Alexandria NSW 2015					NSW	208	0							Results Required By: 21/9/17								1246			
Telephone No: (02) 85	940400													Telep	hone:			843	8 0300	0					
Facsimile No: (02) 85	940499	Contact	Name		Thalia								Facsi	mile:			843	8 0310	C	1		-			
Email: au.samplereceipt.sy	dney@sgs.com		Email Results: engineering@netc							tgeo.com.au;															
Client Sample ID	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate									
BH220 0.9-1.0	12/9/17			x	-	1	x						-		-	-		+				+			
BH230 0.9-1.0	12/9/17			x		1	x											+	_			+			
Relinquished By: Thalia Relinquished By: Samples Intact: Yes/ No		Date Date Tem	e/Time	e: 13/9)/17 Ambie	ent / C	hilled			F F S	Receiv	ed By ed By e Cool		T M	Ance Yes/	No SG No	IE3 Ceive	elbou 041 ed: 15	rne E 35 35–Se Date/ Date/ Labor	HS CO p – 20 Time Time ratory	DC D17	atio	15/11/17	11· a0 a	M
	Com	ment	S:		-0.24																				

SAMPLE RECEIPT ADVICE

- CLIENT DETAILS		LABORATORY DETA	_ LABORATORY DETAILS		
Contact	Thalia Park-Ross	Manager	Adam Atkinson		
Client	NETWORK GEOTECHNICS PTY LTD	Laboratory	SGS Melbourne EH&S		
Address	31 Anvil Rd Seven Hills NSW 2147	Address	10/585 Blackburn Road Notting Hill Victoria 3168		
Telephone	02 8438 0312 / 0411 112 824	Telephone	+61395743200		
Facsimile	02 8438 0310	Facsimile	+61395743399		
Email	tparkross@netgeo.com.au	Email	Au.SampleReceipt.Melbourne@sgs.com		
Project	G09/2571	Samples Received	Fri 15/9/2017		
Order Number	G09/2571	Report Due	Thu 21/9/2017		
Samples	2	SGS Reference	ME304135		

_ SUBMISSION DETAILS

This is to confirm that 2 samples were received on Friday 15/9/2017. Results are expected to be ready by COB Thursday 21/9/2017. Please quote SGS reference ME304135 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	2
Date documentation received	15/9/2017	Type of documentation received	COC
Number of eskies/boxes received		Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	19C
Sufficient sample for analysis	Yes	Turnaround time requested	Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Bldg 10, 585 Blackburn Rd

SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS __

Client NETWORK GEOTECHNICS PTY LTD

Project G09/2571

_	SLIMMARY			
	COMMARY			
	No.	Sample ID	Metals in Solids	Moisture Content
	001	BH220 0.9 - 1.0	8	1
	002	BH230 0.9 - 1.0	8	1
		1		

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS					
Contact Client Address	Thalia Park-Ross NETWORK GEOTECHNICS PTY LTD 31 Anvil Rd Seven Hills NSW 2147	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	02 8438 0312 / 0411 112 824	Telephone	+61 2 8594 0400					
Facsimile	02 8438 0310	Facsimile	+61 2 8594 0499					
Email	tparkross@netgeo.com.au	Email	au.environmental.sydney@sgs.com					
Project	G09-2571	SGS Reference	SE170266 R0					
Order Number	(Not specified)	Date Received	14/9/2017					
Samples	33	Date Reported	21/9/2017					

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

A portion of the sample supplied has been sub-sampled for asbestos due to large sample volume according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environment, Health and Safety recommends supplying approximately 50-100g of sample in a separate container.

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemist

kinter

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SE170266 R0

VOC's in Soil [AN433] Tested: 18/9/2017

			BH2 0-0.1	BH5 0-0.1	BH5 0.9-1.0	BH5 1.4-1.5	BH6 0.4-0.5
			00"	0.011	00"	0.011	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017
PARAMETER	UOM	LOR	SE170266.002	SE170266.005	SE170266.006	SE170266.007	SE170266.008
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH6 1.4-1.5	BH7 0-0.1	BH7 0.9-1.0	BH8 0-0.1	BH9 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017
PARAMETER	UOM	LOR	SE170266.009	SE170266.010	SE170266.011	SE170266.012	SE170266.013
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH10 0-0.1	BH11 0-0.1	BH13 0-0.1	BH14 0.4-0.5	BH16 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			11/9/2017	11/9/2017	11/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.014	SE170266.015	SE170266.016	SE170266.017	SE170266.019
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH20 0.9-1.0	BH30 0.9-1.0	BH130 0.9-1.0	BH120 0.9-1.0	Trip Spike
			5011	5011	5011		SOII
			-	-			-
			12/9/2017	12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.022	SE170266.027	SE170266.028	SE170266.029	SE170266.032
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[85%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[89%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[84%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	[84%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[86%]
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-

SE170266 R0

VOC's in Soil [AN433] Tested: 18/9/2017 (continued)

			Trip Blank SOIL
PARAMETER	UOM	LOR	SE170266.033
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

SE170266 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 18/9/2017

			BH2 0-0.1	BH5 0-0.1	BH5 0.9-1.0	BH5 1.4-1.5	BH6 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.002	SE170266.005	SE170266.006	SE170266.007	SE170266.008
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH6 1.4-1.5	BH7 0-0.1	BH7 0.9-1.0	BH8 0-0.1	BH9 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.009	SE170266.010	SE170266.011	SE170266.012	SE170266.013
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH10 0-0.1	BH11 0-0.1	BH13 0-0.1	BH14 0.4-0.5	BH16 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.014	SE170266.015	SE170266.016	SE170266.017	SE170266.019
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH20 0.9-1.0	BH30 0.9-1.0	BH130 0.9-1.0	BH120 0.9-1.0
			SOIL	SOIL	SOIL	SOIL
			12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.022	SE170266.027	SE170266.028	SE170266.029
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

SE170266 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 18/9/2017

			BH2 0-0.1	BH5 0-0.1	BH5 0.9-1.0	BH5 1.4-1.5	BH6 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 11/9/2017	- 11/9/2017	- 11/9/2017	- 11/9/2017	- 11/9/2017
PARAMETER	UOM	LOR	SE170266.002	SE170266.005	SE170266.006	SE170266.007	SE170266.008
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH6 1.4-1.5	BH7 0-0.1	BH7 0.9-1.0	BH8 0-0.1	BH9 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017
PARAMETER	UOM	LOR	SE170266.009	SE170266.010	SE170266.011	SE170266.012	SE170266.013
TRH C10-C14	mg/kg	20	<20	22	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	340	590	<45	<45
TRH C29-C36	mg/kg	45	<45	650	1500	<45	<45
TRH C37-C40	mg/kg	100	<100	110	320	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	770	1600	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	320	790	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	1000	2100	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	1100	2400	<210	<210

			BH10 0-0.1	BH11 0-0.1	BH13 0-0.1	BH14 0.4-0.5	BH16 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE170266.014	SE170266.015	SE170266.016	SE170266.017	SE170266.019
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 18/9/2017 (continued)

			BH20 0.9-1.0	BH30 0.9-1.0	BH130 0.9-1.0	BH120 0.9-1.0	
			SOIL	SOIL	SOIL	SOIL	
			12/9/2017	12/9/2017	12/9/2017	12/9/2017	
PARAMETER	UOM	LOR	SE170266.022	SE170266.027	SE170266.028	SE170266.029	
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	ĺ
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	

SE170266 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 18/9/2017

			BH2 0-0.1	BH5 0-0.1	BH5 0.9-1.0	BH5 1.4-1.5	BH6 0.4-0.5
					~~~		
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 11/9/2017	11/9/2017	- 11/9/2017	- 11/9/2017	- 11/9/2017
PARAMETER	UOM	LOR	SE170266.002	SE170266.005	SE170266.006	SE170266.007	SE170266.008
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH6 1.4-1.5	BH7 0-0.1	BH7 0.9-1.0	BH8 0-0.1	BH9 0-0.1
			2011	2011	2011	2011	2011
			-	-	- SOIL	- 5012	- 5012
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.009	SE170266.010	SE170266.011	SE170266.012	SE170266.013
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8



#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 18/9/2017 (continued)

			BH10 0-0.1	BH11 0-0.1	BH13 0-0.1	BH14 0.4-0.5	BH16 0.4-0.5
			2011	2011	2011	2011	2011
				- 3012		- 3012	- 3012
			11/9/2017	11/9/2017	11/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.014	SE170266.015	SE170266.016	SE170266.017	SE170266.019
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH20 0.9-1.0	BH30 0.9-1.0	BH130 0.9-1.0	BH120 0.9-1.0
			SOII	SOII	5011	SOII
			-	-	-	-
			12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.022	SE170266.027	SE170266.028	SE170266.029
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8



### SE170266 R0

#### OC Pesticides in Soil [AN420] Tested: 18/9/2017

			BH2 0-0.1	BH8 0-0.1	BH9 0-0.1	BH11 0-0.1	BH15 0-0.1
			SOII	5011	SOII	SOIL	SOIL
			-	-	-	-	-
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.002	SE170266.012	SE170266.013	SE170266.015	SE170266.018
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1



#### OC Pesticides in Soil [AN420] Tested: 18/9/2017 (continued)

			BH17 0.4-0.5	BH19 0-0.1	BH25 0.4-0.5	BH29 0-0.1
			SOIL	SOIL	SOIL	SOIL
			12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.020	SE170266.021	SE170266.024	SE170266.026
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1



### SE170266 R0

#### OP Pesticides in Soil [AN420] Tested: 18/9/2017

			BH2 0-0.1	BH8 0-0.1	BH9 0-0.1	BH11 0-0.1	BH15 0-0.1
DADAMETED	lion		SOIL - 11/9/2017	SOIL - 11/9/2017	SOIL - 11/9/2017	SOIL - 11/9/2017	SOIL - 12/9/2017
	ma/ka	0.5	SE170266.002	SE170266.012	SE170200.013	SE170266.015	SE170266.018
Dimethooto	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	iiig/kg	0.5	<0.5	<0.5	<b>~0.5</b>	<b>~0.0</b>	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH17 0.4-0.5	BH19 0-0.1	BH25 0.4-0.5	BH29 0-0.1
		100	SOIL - 12/9/2017	SOIL - 12/9/2017	SOIL - 12/9/2017	SOIL - 12/9/2017
PARAMETER	UOM	LUR	SE170266.020	SE170266.021	SE170266.024	SE170266.026
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7



### SE170266 R0

#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 20/9/2017

			BH1 0-0.1	BH2 0-0.1	BH3 0-0.1	BH4 0-0.1	BH5 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017
PARAMETER	UOM	LOR	SE170266.001	SE170266.002	SE170266.003	SE170266.004	SE170266.005
Arsenic, As	mg/kg	1	4	3	3	<1	<1
Cadmium, Cd	mg/kg	0.3	0.4	0.5	0.4	<0.3	0.3
Chromium, Cr	mg/kg	0.5	12	18	16	10	15
Copper, Cu	mg/kg	0.5	34	14	32	6.0	5.7
Lead, Pb	mg/kg	1	10	10	11	21	10
Nickel, Ni	mg/kg	0.5	4.9	4.0	7.5	1.8	2.0
Zinc, Zn	mg/kg	2	33	18	52	27	17

			BH5 0.9-1.0	BH5 1.4-1.5	BH6 0.4-0.5	BH6 1.4-1.5	BH7 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.006	SE170266.007	SE170266.008	SE170266.009	SE170266.010
Arsenic, As	mg/kg	1	2	2	2	2	<1
Cadmium, Cd	mg/kg	0.3	0.6	0.8	0.6	0.8	0.3
Chromium, Cr	mg/kg	0.5	35	35	33	34	10
Copper, Cu	mg/kg	0.5	11	11	14	13	7.3
Lead, Pb	mg/kg	1	15	14	15	15	31
Nickel, Ni	mg/kg	0.5	2.5	1.6	2.5	1.6	2.3
Zinc, Zn	mg/kg	2	23	15	27	18	320

			BH7 0.9-1.0	BH8 0-0.1	BH9 0-0.1	BH11 0-0.1	BH13 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE170266.011	SE170266.012	SE170266.013	SE170266.015	11/9/2017 SE170266.016
Arsenic, As	mg/kg	1	2	2	3	1	3
Cadmium, Cd	mg/kg	0.3	0.6	0.6	0.5	0.4	1.1
Chromium, Cr	mg/kg	0.5	34	25	21	17	16
Copper, Cu	mg/kg	0.5	9.8	14	4.8	30	49
Lead, Pb	mg/kg	1	16	37	14	14	330
Nickel, Ni	mg/kg	0.5	2.6	2.5	2.5	7.8	9.5
Zinc, Zn	mg/kg	2	67	85	14	110	280

			BH14 0.4-0.5	BH15 0-0.1	BH16 0.4-0.5	BH17 0.4-0.5	BH19 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/9/2017	12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.017	SE170266.018	SE170266.019	SE170266.020	SE170266.021
Arsenic, As	mg/kg	1	<1	<1	<1	<1	<1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	10	11	4.4	3.5
Copper, Cu	mg/kg	0.5	3.0	5.7	8.0	3.0	1.9
Lead, Pb	mg/kg	1	8	10	10	5	3
Nickel, Ni	mg/kg	0.5	1.4	1.7	2.3	1.2	0.6
Zinc, Zn	mg/kg	2	7	12	13	5	3



#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 20/9/2017 (continued)

			BH20 0.9-1.0	BH22 0-0.1	BH25 0.4-0.5	BH27 0-0.1	BH29 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/9/2017	12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.022	SE170266.023	SE170266.024	SE170266.025	SE170266.026
Arsenic, As	mg/kg	1	3	6	1	5	2
Cadmium, Cd	mg/kg	0.3	0.9	0.9	0.5	0.7	0.6
Chromium, Cr	mg/kg	0.5	25	12	14	14	16
Copper, Cu	mg/kg	0.5	12	5.0	6.3	15	8.1
Lead, Pb	mg/kg	1	16	15	9	11	10
Nickel, Ni	mg/kg	0.5	2.8	1.8	1.5	6.1	6.5
Zinc, Zn	mg/kg	2	17	12	8	39	23

			BH30 0.9-1.0	BH130 0.9-1.0	BH120 0.9-1.0
			SOIL	SOIL	SOIL
			-	-	-
			12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.027	SE170266.028	SE170266.029
Arsenic, As	mg/kg	1	2	2	2
Cadmium, Cd	mg/kg	0.3	0.4	0.5	0.9
Chromium, Cr	mg/kg	0.5	21	21	21
Copper, Cu	mg/kg	0.5	26	25	11
Lead, Pb	mg/kg	1	10	10	12
Nickel, Ni	mg/kg	0.5	8.6	8.1	2.4
Zinc, Zn	mg/kg	2	50	49	15



## SE170266 R0

#### Mercury in Soil [AN312] Tested: 20/9/2017

			BH1 0-0.1	BH2 0-0.1	BH3 0-0.1	BH4 0-0.1	BH5 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017
PARAMETER	UOM	LOR	SE170266.001	SE170266.002	SE170266.003	SE170266.004	SE170266.005
Mereur		0.05	<0.0F	<0.0E	<0.0E	<0.0E	<0.0F
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH5 0.9-1.0	BH5 1.4-1.5	BH6 0.4-0.5	BH6 1.4-1.5	BH7 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.006	SE170266.007	SE170266.008	SE170266.009	SE170266.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH7 0.9-1.0	BH8 0-0.1	BH9 0-0.1	BH11 0-0.1	BH13 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.011	SE170266.012	SE170266.013	SE170266.015	SE170266.016
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH14 0.4-0.5	BH15 0-0.1	BH16 0.4-0.5	BH17 0.4-0.5	BH19 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/9/2017	12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.017	SE170266.018	SE170266.019	SE170266.020	SE170266.021
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH20 0.9-1.0	BH22 0-0.1	BH25 0.4-0.5	BH27 0-0.1	BH29 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/9/2017	12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.022	SE170266.023	SE170266.024	SE170266.025	SE170266.026
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH30 0.9-1.0	BH130 0.9-1.0	BH120 0.9-1.0
			SOIL	SOIL	SOIL
			12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.027	SE170266.028	SE170266.029
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05



## SE170266 R0

#### Moisture Content [AN002] Tested: 19/9/2017

			BH1 0-0.1	BH2 0-0.1	BH3 0-0.1	BH4 0-0.1	BH5 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.001	SE170266.002	SE170266.003	SE170266.004	SE170266.005
% Moisture	%w/w	0.5	9.5	11	9.5	12	11

			BH5 0.9-1.0	BH5 1.4-1.5	BH6 0.4-0.5	BH6 1.4-1.5	BH7 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.006	SE170266.007	SE170266.008	SE170266.009	SE170266.010
% Moisture	%w/w	0.5	21	19	22	19	7.9

			BH7 0.9-1.0	BH8 0-0.1	BH9 0-0.1	BH10 0-0.1	BH11 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	11/9/2017	
PARAMETER	UOM	LOR	SE170266.011	SE170266.012	SE170266.013	SE170266.014	SE170266.015
% Moisture	%w/w	0.5	21	19	10	20	19

			BH13 0-0.1	BH14 0.4-0.5	BH15 0-0.1	BH16 0.4-0.5	BH17 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.016	SE170266.017	SE170266.018	SE170266.019	SE170266.020
% Moisture	%w/w	0.5	19	15	19	17	11

			BH19 0-0.1	BH20 0.9-1.0	BH22 0-0.1	BH25 0.4-0.5	BH27 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			12/9/2017	12/9/2017	12/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.021	SE170266.022	SE170266.023	SE170266.024	SE170266.025
% Moisture	%w/w	0.5	13	25	20	17	31

			BH29 0-0.1	BH30 0.9-1.0	BH130 0.9-1.0	BH120 0.9-1.0	Trip Blank
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 12/9/2017	- 12/9/2017	- 12/9/2017	- 12/9/2017	- 12/9/2017
PARAMETER	UOM	LOR	SE170266.026	SE170266.027	SE170266.028	SE170266.029	SE170266.033
% Moisture	%w/w	0.5	13	10	11	24	<0.5



### SE170266 R0

#### Fibre Identification in soil [AN602] Tested: 20/9/2017

			BH1 0-0.1	BH3 0-0.1	BH13 0-0.1	BH14 0.4-0.5	BH15 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/9/2017	11/9/2017	11/9/2017	12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.001	SE170266.003	SE170266.016	SE170266.017	SE170266.018
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH16 0.4-0.5	BH17 0.4-0.5
			SOIL	SOIL
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.019	SE170266.020
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01



### SE170266 R0

#### VOCs in Water [AN433] Tested: 15/9/2017

			DW1	DW2
			WATER	WATER
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
Benzene	µg/L	0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5



#### Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 15/9/2017

			DW1	DW2
			WATER	WATER
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
TRH C6-C9	µg/L	40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50



### SE170266 R0

#### TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 18/9/2017

			DW1	DW2
			WATER	WATER
			- 12/9/2017	- 12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
TRH C10-C14	µg/L	50	<50	<50
TRH C15-C28	µg/L	200	<200	<200
TRH C29-C36	µg/L	200	<200	<200
TRH C37-C40	µg/L	200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500
TRH C10-C36	µg/L	450	<450	<450
TRH C10-C40	µg/L	650	<650	<650
TRH >C10-C16 (F2) - Naphthalene	µg/L	60	<60	<60



### SE170266 R0

#### PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 18/9/2017

			DW1	DW2
			WATER	WATER
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
Naphthalene	μg/L	0.1	<0.1	<0.1
2-methylnaphthalene	μg/L	0.1	<0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1
Phenanthrene	μg/L	0.1	<0.1	<0.1
Anthracene	μg/L	0.1	<0.1	<0.1
Fluoranthene	μg/L	0.1	<0.1	<0.1
Pyrene	μg/L	0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1
Chrysene	μg/L	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1
Benzo(k)fluoranthene	μg/L	0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1
Total PAH (18)	μg/L	1	<1	<1



### SE170266 R0

#### OC Pesticides in Water [AN420] Tested: 18/9/2017

NATER         WATER         WATER         WATER         WATER           129/2017         129/2017         129/2017         129/2017         129/2017           PARMETER         UOM         LOR         40.1         40.1           Alpha BHC         µgL         0.1         40.1         40.1           Linden (gamma BHC)         µgL         0.1         40.1         40.1           Heptachlor         µgL         0.1         40.1         40.1           Ideta BHC         µgL         0.1         40.1         40.1           Beta BHC         µgL         0.1         40.1         40.1           Alpha Endosulfan         µgL         0.1         40.1         40.1           Gamma Chlordane         µgL         0.1         40.1         40.1           Alpha Endosulfan         µgL         0.1         40.1         40.1           Gamma Chlordane         µgL         0.1         40.1         40.1           Alpha Chlordane         µgL         0.1         40.1         40.1           QirbDD         µgL         0.1         40.1         40.1           QirbDT         µgL         0.1         40.1         40.1				DW1	DW2
PARAMETER         UOM         LOR         12/2/2017           PRAMETER         UOM         LOR         12/2/2017         58/170260.000         58/170260.000           Hexachiorobenzene (HCB)         µg/L         0.1         <0.1				WATER	WATER
PARAMETR         UOM         LOM         E1202017         12092017           PARAMETR         UOM         CR         SE170266.030         SE170266.030           Hexachloroberzene (HCB)         µg/L         0.1         <0.1					-
PARAMETER         UOM         LOR         SET7026.030         SET7026.031           Hexachlorobenzene (HCB)         µg/L         0.1         <0.1				12/9/2017	12/9/2017
Hexachiorobenzene (HCB)         μg/L         0.1         <0.1         <0.1           Alpha BHC         μg/L         0.1         <0.1	PARAMETER	UOM	LOR	SE170266.030	SE170266.031
Alpha BHC         µg/L         0.1         <0.1         <0.1         <0.1           Lindane (gamma BHC)         µg/L         0.1         <0.1	Hexachlorobenzene (HCB)	µg/L	0.1	<0.1	<0.1
Lindane (gamma BHC)         µg/L         0.1	Alpha BHC	µg/L	0.1	<0.1	<0.1
Heptachlor         μg/L         0.1	Lindane (gamma BHC)	µg/L	0.1	<0.1	<0.1
Aldrin       µg/L       0.1       <0.1	Heptachlor	µg/L	0.1	<0.1	<0.1
Beta BHC         µg/L         0.1         <0.1         <0.1           Deta BHC         µg/L         0.1         <0.1	Aldrin	µg/L	0.1	<0.1	<0.1
Delta BHC         µg/L         0.1         <0.1         <0.1           Heptachior epoxide         µg/L         0.1         <0.1	Beta BHC	µg/L	0.1	<0.1	<0.1
Heptachlor epoxide         µg/L         0.1         <0.1         <0.1           0,p'DDE         µg/L         0.1         <0.1	Delta BHC	µg/L	0.1	<0.1	<0.1
o.p. ² DDE         µg/L         0.1         <0.1         <0.1           Alpha Endosulfan         µg/L         0.1         <0.1	Heptachlor epoxide	µg/L	0.1	<0.1	<0.1
Alpha Endosulfan         µg/L         0.1         <0.1         <0.1           Gamma Chlordane         µg/L         0.1         <0.1	o,p'-DDE	μg/L	0.1	<0.1	<0.1
Gamma Chlordane $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Alpha Chlordane $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ trans-Nonachlor $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $\rho_{P}$ -DDE $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Dieldrin $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Endrin $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $o, p$ -DDD $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $o, p$ -DDD $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $o, p$ -DDT $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $o, p$ -DDT $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $p, p$ -DDD $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $p, p$ -DDT $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Endosulfan $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $p, p$ -DDT $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Endosulfan	Alpha Endosulfan	μg/L	0.1	<0.1	<0.1
Alpha Chlordane $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ trans-Nonachlor $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $\rho, p^-DDE$ $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Dieldrin $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Endrin $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $o, p^-DDD$ $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $o, p^-DDD$ $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $o, p^-DDT$ $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $o, p^-DDT$ $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $p, p^-DDD$ $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $p, p^-DDT$ $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $p, p^-DDT$ $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Endosulfan sulphate $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ Endrin aldehyde $\mu g/L$ 0.1 $< 0.1$ $< 0.1$ $< 0.1$	Gamma Chlordane	μg/L	0.1	<0.1	<0.1
trans-Nonachlor       µg/L       0.1       <0.1       <0.1         p,p'-DDE       µg/L       0.1       <0.1	Alpha Chlordane	μg/L	0.1	<0.1	<0.1
p.p'-DDE         µg/L         0.1         <0.1         <0.1           Dieldrin         µg/L         0.1         <0.1	trans-Nonachlor	μg/L	0.1	<0.1	<0.1
Dieldrin         µg/L         0.1         <0.1         <0.1           Endrin         µg/L         0.1         <0.1	p,p'-DDE	μg/L	0.1	<0.1	<0.1
Endrin         µg/L         0.1         <0.1         <0.1           o,p'-DDD         µg/L         0.1         <0.1	Dieldrin	μg/L	0.1	<0.1	<0.1
o,p'-DDD         µg/L         0.1         <0.1         <0.1           o,p'-DDT         µg/L         0.1         <0.1	Endrin	μg/L	0.1	<0.1	<0.1
o,p'-DDT         µg/L         0.1         <0.1         <0.1           Beta Endosulfan         µg/L         0.1         <0.1	o,p'-DDD	μg/L	0.1	<0.1	<0.1
Beta Endosulfan         µg/L         0.1         <0.1         <0.1           p,p'-DDD         µg/L         0.1         <0.1	o,p'-DDT	μg/L	0.1	<0.1	<0.1
p.p'-DDD         µg/L         0.1         <0.1         <0.1           p.p'-DDT         µg/L         0.1         <0.1	Beta Endosulfan	μg/L	0.1	<0.1	<0.1
p.p'-DDT         µg/L         0.1         <0.1         <0.1           Endosulfan sulphate         µg/L         0.1         <0.1	p,p'-DDD	μg/L	0.1	<0.1	<0.1
Endosulfan sulphate         µg/L         0.1         <0.1         <0.1           Endrin aldehyde         µg/L         0.1         <0.1	p,p'-DDT	μg/L	0.1	<0.1	<0.1
Endrin aldehyde         µg/L         0.1         <0.1         <0.1           Methoxychlor         µg/L         0.1         <0.1	Endosulfan sulphate	μg/L	0.1	<0.1	<0.1
Methoxychlor         µg/L         0.1         <0.1         <0.1           Endrin ketone         µg/L         0.1         <0.1	Endrin aldehyde	μg/L	0.1	<0.1	<0.1
Endrin ketone         μg/L         0.1         <0.1         <0.1           Isodrin         μg/L         0.1         <0.1	Methoxychlor	µg/L	0.1	<0.1	<0.1
lsodrin µg/L 0.1 <0.1 <0.1	Endrin ketone	μg/L	0.1	<0.1	<0.1
	Isodrin	µg/L	0.1	<0.1	<0.1
Mirex µg/L 0.1 <0.1 <0.1	Mirex	µg/L	0.1	<0.1	<0.1



### SE170266 R0

#### OP Pesticides in Water [AN420] Tested: 18/9/2017

			DW1	DW2
			WATER	WATER
			- 12/9/2017	- 12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
Dichlorvos	μg/L	0.5	<0.5	<0.5
Dimethoate	μg/L	0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5	<0.5
Fenitrothion	μg/L	0.2	<0.2	<0.2
Malathion	μg/L	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	μg/L	0.2	<0.2	<0.2
Bromophos Ethyl	μg/L	0.2	<0.2	<0.2
Methidathion	μg/L	0.5	<0.5	<0.5
Ethion	μg/L	0.2	<0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2	<0.2



### SE170266 R0

#### pH in water [AN101] Tested: 15/9/2017

			DW1	DW2
			WATER	WATER
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
pH**	No unit	-	6.0	6.0



### SE170266 R0

#### Conductivity and TDS by Calculation - Water [AN106] Tested: 15/9/2017

			DW1	DW2
			WATER	WATER
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
Conductivity @ 25 C	µS/cm	2	290	300



### SE170266 R0

#### Metals in Water (Dissolved) by ICPOES [AN320] Tested: 19/9/2017

			DW1	DW2
			WATER	WATER
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
Total Hardness by Calculation	mg CaCO3/L	5	37	46



### SE170266 R0

#### Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 20/9/2017

			DW1	DW2
			WATER	WATER
			- 12/9/2017	- 12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
Arsenic, As	µg/L	1	1	1
Cadmium, Cd	µg/L	0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	1	<1
Copper, Cu	µg/L	1	3	3
Lead, Pb	µg/L	1	<1	<1
Nickel, Ni	µg/L	1	1	1
Zinc, Zn	µg/L	5	<5	<5



### SE170266 R0

#### Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 21/9/2017

			-	
			DW1	DW2
			WATER	WATER
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266.030	SE170266.031
Mercury	mg/L	0.0001	<0.0001	<0.0001



METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as $\mu$ mhos/cm or $\mu$ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1.5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.



AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	<ul> <li>(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):</li> <li>(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and</li> <li>(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.</li> </ul>

#### FOOTNOTES -

* N ti ** Ii ti	NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.	- NVL IS LNR	Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.	UOM LOR ↑↓	Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.	
--------------------------	---------------------------------------------------------------------------------------------------------------------------------	-----------------------	----------------------------------------------------------------------------------------------------------	------------------	----------------------------------------------------------------------------------	--

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



SGS				C	НА	IN C	OF C	:US	τοε	OY 8	& AN	IAL	YS	IS R	EQI	JES	т		Page1 of11			
SGS Environmental S	ervices	Compar	ny Nam	e:	Netw	ork Ge	eotech	nics Pt	y Ltd					Proje	ct Nam	ne/No:		G09/2571	And the second se			
Unit 16, 33 Maddox St	reet	Address	:	-	Unit	12/9-1	5 Gund	dah Ro	ad, Mt	Kurin	g-Gai			Purch	ase O	rder N	lo:					
Alexandria NSW 2015				-	NSW	208	C							Resu	Its Rec	quired	By:	21/9/17				
Telephone No: (02) 85	940400													Telep	hone:			8438 0300				
Facsimile No: (02) 85	5940499	Contact	Name:		Thali	а								Facsi	mile:			8438 0310				
Email: au.samplereceipt.sy	dney@sgs.com													Email	Resul	lts:	2	engineering@netgec	o.com.au;			
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate					
BH1 0-0.1	11/9/17	1	1	X		1	x						1	x								
BH1 0.4-0.5	11/9/17			X	-	1							-				-					
BH1 0.9-1.0	11/9/17			X		1								-				SGS EHS	Alexandria Laboratory			
BH2 0-0.1	11/9/17	2		X		1	x	x			x					-						
BH2 0.4-0.5	11/9/17			X		1												<u>}} ∥∥₩∥₩₩</u>				
BH2 0.9-1.0	11/9/17			X	1	1												SE17	0266 COC			
BH3 0-0.1	11/9/17	3		X	1	1	x							X				Received	l: 14 – Sep – 2017			
BH3 0.4-0.5	11/9/17			X		1																
BH3 0.9-1.0	11/9/17			X		1																
Relinquished By: Thalia	L I_	Da	te/Time	e: 13/	9/17			1		F	Receiv	ed By	/: ₂	D	2	sut		Date/Time	18/09/17 @ 2:45			
Relinquished By:		Da	te/Time	e:			0			F	Receiv	ed By	<i>I</i> :	-	T			Date/Time				
Samples Intact: Yes No		Ter	nperat	ure:	Ambi	ent / C	hilled			5	Sampl	e Coo	ler Se	ealed:	Yes/	No		Laboratory Quo	otation No:			
	Co	mment	ts:														1					

SGS				С	HA	IN C	OF C	:US ⁻	τοε	)Y 8	AN	IAL	YSI	S R	EQI	JES	т					Page	_2_	of11	
SGS Environmental S	ervices	Compa	Company Name:     Network Geotechnics Pty Ltd     Project Name       Address:     Unit 12/9-15 Gundah Road, Mt Kuring-Gai     Purchase Or       NSW 2080     Results Requ       Telephone:     Telephone:															G09	/2571						
Unit 16, 33 Maddox St	reet	Addres	s:	-	Unit 1	2/9-1	5 Gund	lah Ro	ad, Mt	Kuring	g-Gai			Purch	ase O	rder N	o:								
Alexandria NSW 2015					NSW	208	)							Resul	ts Req	uired	By:	21/9	/17						
Telephone No: (02) 85	940400			-										Telep	hone:			8438	3 0300						
Facsimile No: (02) 85	5940499	Contact	Name		Thalia	э								Facsi	mile:			8438	3 0310						
Email: au.samplereceipt.sy	dney@sgs.com													Email	Resul	ts:		<u>engi</u>	neering	g@net	geo.co	om.au;			
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate								
BH4 0-0.1	11/9/17	4	1	X		1	x															1			
BH4 0.4-0.5	11/9/17		1	X		1												1							
BH4 0.9-1.0	11/9/17		1	X		1																			
BH5 0-0.1	11/9/17	5	1	X		1	x	X																	
BH5 0.4-0.5	11/9/17			X		1																			
BH5 0.9-1.0	11/9/17	5		X		1	X	X																	
BH5 1.4-1.5	11/9/17	7		X		1	X	X																	
BH6 0-0.1	11/9/17		1	X		1																			
BH6 0.4-0.5	11/9/17	8		X		1	Х	x																	
Relinquished By: Thalia	I	Da	Date/Time: 13/9/17									ed By	r:	D.	B	th-	-1		Date/	Time	13	1091	17	22	.45
Relinquished By:	COULTRATION .	Da	Date/Time: Recei										<i>r</i> :	1.	1		1		Date/	Time					
Samples Intact: Yes/ No	1	Те	Temperature: Ambient / Chilled Sample									e Coo	ler S	ealed:	Yes/	No			Labor	atory (	Quota	tion No	):		
		Co	Comments:																						

SGS				С	HA	IN C	OF C	US'	τοε	)Y 8	k AN	IAL	YS	IS R	EQI	JES	T					Page	3	_ of	11	
SGS Environmental S	ervices	Company	y Nam	e:	Netw	ork Ge	otech	nics Pt	y Ltd					Proje	ct Nam	ne/No:		G09	/2571							
Unit 16, 33 Maddox St	reet	Address:		-	Unit 1	2/9-1	5 Gund	lah Ro	ad, Mt	Kurin	g-Gai			Purc	nase O	rder N	lo:									
Alexandria NSW 2015				1	NSW	2080	)							Resu	Its Rec	uired	By:	21/9	/17							
Telephone No: (02) 85	940400			_										Telep	ohone:			843	8 0300							
Facsimile No: (02) 85	940499	Contact I	Contact Name: Thalia											Facs	imile:			843	3 0310							
Email: au.samplereceipt.sy	dney@sgs.com													Emai	l Resul	ts:		engi	neering	g@net	geo.co	om.au;				
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate									
BH6 0.9-1.0	11/9/17			X		1																				
BH6 1.4-1.5	11/9/17	9		X		1	X	X																		
BH7 0-0.1	11/9/17	10		X		1	X	x																		
BH7 0.4-0.5	11/9/17	1 -	1	X		1																				
BH7 0.9-1.0	11/9/17	4		X		1	x	X																		
BH7 1.4-1.5	11/9/17			X		1												1								
BH8 0-0.1	11/9/17	12		X		1	X	X			X														-	
BH8 0.4-0.5	11/9/17			X		1																				
BH8 0.9-1.0	11/9/17			X		1																				
Relinquished By: Thalia		Date	e/Time	e: 13/9	9/17		A			F	Receiv	ed By	1: R	Br	RI	r	1		Date/	Fime	13	1091	112	C	2.4	5
Relinquished By:		Date	Date/Time: Rec										<i>I</i> :	1 0	t		1		Date/	Гime						
Samples Intact: Yes No		Ten	Temperature: Ambient / Chilled San										ler S	ealed:	Yes/	No			Labor	atory (	Quota	tion No	:			
		Con	Temperature: Ambient / Chilled Sample Cooler Seale Comments:																							

SGS				С	HA	IN C	DF C	US.	τοε	)Y 8		AL	YS	IS R	EQI	JES	т					Pa	ge4_	_ of	_11	
SGS Environmental S	ervices	Company	y Nam	e:	Netw	ork Ge	otechr	nics Pt	y Ltd					Proje	ct Nam	e/No:		G0	9/2571							
Unit 16, 33 Maddox St	reet	Address:			Unit 1	2/9-1	5 Gund	lah Ro	ad, Mt	Kuring	g-Gai			Purch	ase O	rder N	0:									
Alexandria NSW 2015				- -	NSW	208	)							Resu	ts Rec	uired I	By:	21/	9/17							
Telephone No: (02) 85	940400			_										Telep	hone:			843	8 0300	)						
Facsimile No: (02) 85	5940499	Contact	Contact Name:Thalia											Facsi	mile:			843	8 0310							
Email: au.samplereceipt.sy	dney@sgs.com														Resul	ts:		enc	ineerin	g@net	geo.co	om.ai	<u>u;</u>			
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate									
BH9 0-0.1	11/9/17	12		X		1	x	x	-		X									1		1				
BH9 0.4-0.5	11/9/17		1	X		1															1					
BH9 0.9-1.0	11/9/17			X	-	1																				
BH10 0-0.1	11/9/17	14	1	X		1		X											1			1				
BH10 0.4-0.5	11/9/17			X		1														1						
BH10 0.9-1.0	11/9/17			X		1																				
BH11 0-0.1	11/9/17	15		X		1	X	X			X															
BH11 0.4-0.5	11/9/17			X		1																		Control .		
BH11 0.9-1.0	11/9/17			X		1																				
Relinquished By: Thalia		Date	Date/Time: 13/9/17										:	R	Ri	eh.			Date/	Time	13	310	2/17	e	2.1	15
Relinquished By:		Date	Date/Time: Received E										': ':	-pr	Y		1		Date/	Time					14	
Samples Intact: Yes No		Ten	nperat	ure:	Ambie	ent / C	hilled			5	Sample	e Coo	ler Se	ealed:	Yes/	No			Labo	atory	Quota	tion I	No:			
		Con	Comments:																							

SGS			С	HA	IN C	OF C	US'	τοε	)Y 8	k AN	IAL'	YS	IS R	EQI	JES	т				Page5 of11				
SGS Environmental S	Company	Company Name:				Network Geotechnics Pty Ltd									e/No:		G09	G09/2571						
Unit 16, 33 Maddox St	reet	Address:	2		Unit 12/9-15 Gundah Road, Mt Kuring-Gai									Purchase Order No:										
Alexandria NSW 2015				-	NSW 2080									Resu	lts Req	uired	By:	21/9	/17					
Telephone No: (02) 85	940400														hone:			843	3 0300					
Facsimile No: (02) 85	5940499	Contact	Name:	_	Thalia									Facsi	mile:			843	3 0310					
Email: au.samplereceipt.sy	Email Results: engineering@netge											geo.co	om.au;											
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate							
BH12 0-0.1	11/9/17			X		1													1	1				
BH12 0.4-0.5	11/9/17			X		1												1	-					
BH12 0.9-1.0	11/9/17		1	X	1	1																		
BH13 0-0.1	11/9/17	IC		X		1	x	X						x										
BH13 0.4-0.5	11/9/17			X		1																		
BH13 0.9-1.0	11/9/17	and the second second	-	X	1	1														1				
BH14 0-0.1	12/9/17			X	1	1													1					
BH14 0.4-0.5	12/9/17	17		X		1	x	X						х										
BH14 0.9-1.0	12/9/17		1	X		1																		
Relinquished By: Thalia	Dat	e/Tim	e: 13/9	9/17		L	dee	<u> </u>	F	Receiv	ed By	r:	R	R	uh			Date/	Time	١,	3/09/17	02	+45	
Relinquished By:			e/Tim	e:						F	Receiv	ed By	r:	P					Date/	Time				
Samples Intact: Yes No		Ten	nperat	ture:	Ambie	ent / C	hilled			1	Sampl	e Coo	ler S	ealed:	Yes/	No			Labor	atory (	/ Quotation No:			
	Cor	nmen	ts:																					

SGS			С	HA	IN C	DF C	US	τοε	)Y 8	k AN	IAL'	YS	IS R	EQI	JES	т				Page6 of11					
SGS Environmental Services		Compan	y Nam	e: Network Geotechnics Pty Ltd										Project Name/No: G09											
Unit 16, 33 Maddox St	reet	Address	:	_	Unit 12/9-15 Gundah Road, Mt Kur						ring-Gai				Purchase Order No:										
Alexandria NSW 2015				-	NSW 2080										Results Required By: 2										
Telephone No: (02) 85	940400			-											hone:			843	8 0300						
Facsimile No: (02) 85	5940499	Contact	Name:	i	Thalia										mile:			843	8 0310						
Email: au.samplereceipt.sy		Email Results: engineering@netgeo.cc											om.au;												
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate								
BH14 1.4-1.5	12/9/17			X		1														1					
BH15 0-0.1	12/9/17	25	1	X		1	x				X			X											
BH15 0.4-0.5	12/9/17	0	1	X		1																			
BH15 0.9-1.0	12/9/17		1	X		1											1								
BH15 1.4-1.5	12/9/17	ili nan kantat tak		X		1																			
BH16 0-0.1	12/9/17			X		1																			
BH16 0.4-0.5	12/9/17	19		X		1	x	х						X											
BH16 0.9-1.0	12/9/17			Х		1																			
BH16 1.4-1.5	12/9/17	a air an suite ann an		X		1																			
Relinquished By: Thalia	Dat	e/Time	e: 13/9	9/17	· · · · ·		lana ann an		F	Receiv	ed By	:	A	rel	ut	-		Date/	Time	12	3/09	117	@2	-40-	
Relinquished By:	Dat	e/Time	e:						F	Receiv	ed By	:				1		Date/	Time						
Samples Intact: Yes No		Ter	nperat	ture:	Ambie	ent / C	hilled			5	Sampl	e Coo	ler Se	ealed:	Yes/	No			Labor	atory (	/ Quotation No:				
	Cor	nment	ts:																						

SGS			С	HA	IN C	DF C	US	ΓΟΓ	)Y 8	k AN	IAL'	YS	IS R	EQI	JES	т				Page7 of11							
SGS Environmental Services		Compan	Company Name:				Network Geotechnics Pty Ltd											G09	2571								
Unit 16, 33 Maddox St	reet	Address	Address:				Unit 12/9-15 Gundah Road, Mt Kuring-Gai										Purchase Order No:										
Alexandria NSW 2015					NSW 2080										ts Req	uired	By:	21/9	/17								
Telephone No: (02) 85	940400													Telep	hone:			8438	0300								
Facsimile No: (02) 85	940499	Contact	Contact Name:			a								Facsi	mile:			8438	0310								
Email: au.samplereceipt.sy															Email Results:					engineering@netgeo.com.au;							
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate										
BH17 0-0.1	12/9/17			X		1																					
BH17 0.4-0.5	12/9/17	20		X		1	х				X			X													
BH17 0.9-1.0	12/9/17			X		1																					
BH17 1.4-1.5	12/9/17			X		1																					
BH18 0-0.1	12/9/17			X		1																					
BH18 0.4-0.5	12/9/17	100 A. (1997)		X		1																					
BH18 0.9-1.0	12/9/17	ar Maria Sanada Angela		X		1																					
BH19 0-0.1	12/9/17	21		X		1	x				X																
BH19 0.4-0.5	12/9/17			X		1																					
Relinquished By: Thalia	Dat	Date/Time: 13/9/17										1:	Br	B	L	1		Date/Time 12/09/17 @ 2:45									
Relinquished By:			te/Time	e:						F	Received By: Date/Tir								Гime	3							
Samples Intact: Yes/No			nperat	ure:	Ambie	ent / C	hilled			5	Sampl	e Coo	ler S	ealed:	Yes/	No			Labora	atory (	Quotation No:						
	Co	mmen	IS:		-																						
SGS	2011 (2011) (2011) (2011)			С	HA	IN C	OF C	US"	τοε	)Y 8	k AN	IAL'	YSI	IS R	EQI	JES	т					Page8 o	f11				
----------------------------	------------------------------	----------------------------	--------	---------	--------------	------------------	----------------	--------------	---------------	--------	------------------	-----------------	----------------------	-------------	---------	--------	-------------------	--------	---------	---------	--------	----------	-----	----			
SGS Environmental S	ervices	Compan	y Nam	e:	Netwo	ork Ge	otechr	nics Pt	y Ltd					Proje	ct Nam	e/No:		G09	/2571								
Unit 16, 33 Maddox St	reet	Address	:		Unit 1	2/9-15	5 Gund	lah Ro	ad, Mt	Kuring	g-Gai			Purch	ase O	rder N	o:										
Alexandria NSW 2015				_	NSW	2080	)							Resu	Its Req	uired	By:	21/9	/17								
Telephone No: (02) 85	940400			_										Telep	hone:			8438	3 0300								
Facsimile No: (02) 85	940499	Contact	Name:	_	Thalia	3								Facsi	mile:			8438	3 0310	_							
Email: au.samplereceipt.sy	dney@sgs.com													Emai	Resul	ts:		engi	neering	g@net	geo.co	om.au;					
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate				*						
BH20 0-0.1	12/9/17		1	x		1		1						1													
BH20 0.4-0.5	12/9/17			X	1	1												1									
BH20 0.9-1.0	12/9/17	22		X		1	x	X																			
BH21 0-0.1	12/9/17			X		1																					
BH21 0.4-0.5	12/9/17	A CONTRACT OF STREET, SALE		X		1															le l						
BH22 0-0.1	12/9/17	25		X		1	X																				
BH22 0.4-0.5	12/9/17			X		1																					
BH23 0-0.1	12/9/17			X		1																					
BH23 0.4-0.5	12/9/17	- 40 M - 20 - 20		X		1																					
Relinquished By: Thalia	<u> </u>	Dat	e/Time	e: 13/9	9/17					F	Receiv	ed By	r:	R	A	Su	~		Date/1	Time	10	3/09/17	@24	45			
Relinquished By:	Dat	e/Time	e:			0			F	Receiv	ed By	<i>ı</i> :	4	1		1		Date/1	Time								
Samples Intact: Yes/No		Ter	nperat	ture:	Ambie	ent / C	hilled	)		5	Sampl	e Coo	ler S	ealed:	Yes/	No			Labora	atory (	Quotat	tion No:					
		Cor	nmen	ts:																							

SGS				C	HA	IN C	OF C	US'	TOD	)Y 8	k AN	IAL	YSI	S R	EQI	JES	т					Page	99	of1	1
SGS Environmental S	ervices	Compa	ny Nam	ie:	Netw	ork Ge	otechr	nics Pt	y Ltd					Projec	ct Nam	e/No:		G09	/2571						
Unit 16, 33 Maddox St	reet	Address	<b>S</b> :		Unit 1	2/9-15	5 Gund	lah Ro	ad, Mt	Kuring	g-Gai			Purch	ase O	rder N	o:								
Alexandria NSW 2015					NSW	2080	)							Resul	ts Req	uired	By:	21/9	)/17						
Telephone No: (02) 85	940400													Telep	hone:			843	8 0300						
Facsimile No: (02) 85	940499	Contact	Name	: -	Thalia	3								Facsi	mile:			843	8 0310						
Email: au.samplereceipt.sy	dney@sgs.com		2.1											Email	Resul	ts:		<u>eng</u>	neering	g@net	geo.cc	om.au;			
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenois	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate								
BH24 0-0.1	12/9/17			X		1																			
BH24 0.4-0.5	12/9/17		1	X		1																			
BH25 0-0.1	12/9/17			X		1																			
BH25 0.4-0.5	12/9/17	24		X		1	x				X									1					
BH26 0-0.1	12/9/17			X		1																			
BH26 0.4-0.5	12/9/17			X		1																			
BH27 0-0.1	12/9/17	25		X		1	x																		
BH27 0.4-0.5	12/9/17			X		1																			
BH28 0-0.1	12/9/17			X		1																			
Relinquished By: Thalia	l	Da	ite/Tim	e: 13/	9/17		1			F	Receiv	ed By		A	A	Sul	~		Date/	Time	1	3/00	ciliz	02	2:45
Relinquished By:		Da	te/Tim	e:						F	Receiv	ed By	<i>r</i> :	1			(		Date/	Time					
Samples Intact: Yes/No	Te	mpera	ture:	Ambie	ent / q	hilled			5	Sampl	e Coo	ler Se	ealed:	Yes/	No			Labor	atory (	Quotat	tion No	<b>D</b> :			
	Co	mmen	ts:																						

SGS				С	HA	IN C	)F C	US.	TOD	9Y 8	k AN	IAL	YS	IS R	EQL	JES	т				F	^D age	_10	_of1	1
SGS Environmental S	ervices	Company	y Nam	e:	Netwo	ork Ge	otechr	nics Pt	y Ltd					Proje	ct Nam	e/No:		G09/2	571						
Unit 16, 33 Maddox St	reet	Address:		-	Unit 1	2/9-15	5 Gund	lah Ro	ad, Mt	Kuring	g-Gai			Purch	nase O	rder N	o:								
Alexandria NSW 2015				_	NSW	2080	)							Resu	Its Req	uired I	By:	21/9/1	7						
Telephone No: (02) 85	940400			-										Telep	hone:			8438 0	0300						
Facsimile No: (02) 85	940499	Contact	Name:		Thalia	3								Facsi	mile:			8438 (	0310						
Email: au.samplereceipt.sy	dney@sgs.com													Emai	Resul	ts:		engine	eering(	@netg	eo.coi	<u>m.au;</u>			
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate								
BH28 0.4-0.5	12/9/17			x		1								1											
BH29 0-0.1	12/9/17	26		x		1	x				x			1											
BH29 0.4-0.5	12/9/17			X		1				_															
BH30 0-0.1	12/9/17			X		1																			
BH30 0.4-0.5	12/9/17			X		1																			
BH30 0.9-1.0	12/9/17	27		X		1	x	X																	
BH130 0.9-1.0	12/9/17	28		X		1	X	X																	
BH120 0.9-1.0	12/9/17	29		X		1	X	Х																	
Relinquished By: Thalia	I <u>, and a</u>	Dat	e/Time	e: 13/	9/17					F	Receiv	ed By	r:	R.	A	1	-1	D	ate/Ti	me	13	109/1	7	@ 2	2.45
Relinquished By:		Dat	e/Time	e:			-			F	Receiv	ed By	r:	T	(			D	ate/Ti	me					
Samples Intact: Yes/No		Ten	nperat	ture:	Ambie	ent / C	hilled			5	Sampl	e Coo	ler S	ealed:	Yes/	No		La	aborat	tory Q	uotati	ion No:			
		Cor	nment	ts:		- +																			

SGS			HU	C	HA	IN C	DF C	US	TOD	9 Y (	& A1	NAL	YS	IS R	EQI	JES	т					Page _	_11	of1′	I
SGS Environmental S	ervices	Compan	y Nam	e:	Netw	ork Ge	otechr	nics Pt	y Ltd					Proje	ct Nam	ne/No:		G09	/2571						
Unit 16, 33 Maddox St	reet	Address		_	Unit 1	2/9-1	5 Gund	lah Ro	ad, Mt	Kurin	ig-Gai			Purch	ase O	rder N	lo:								
Alexandria NSW 2015				_	NSW	2080	)							Resu	ts Rec	luired	By:	21/9	/17						
Telephone No: (02) 85	940400			-										Telep	hone:			8438	3 0300						
Facsimile No: (02) 85	5940499	Contact	Name:	-	Thalia	3								Facsi	mile:		c.	8438	3 0310						
Email: au.samplereceipt.sy	rdney@sgs.com											_		Email	Resul	ts:		<u>engi</u>	neering	@netg	geo.co	om.au;			
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	8 Heavy Metals	TRH/BTEX/PAH	Total Phenols	PCB	OC/OP Pesticides	Ammonia/Nitrate	E Coli/T Coli/F Coli	Asbestos ID	CEC/pH	EC/pH	Chloride/Sulphate	Total hardness	BTEX						
DW1	12/9/17	30		X		1	x	X			x					X		X						1	
DW2	12/9/17	31		X		1	x	X			X					X		X							
Trip spike		32		X		1													x						
Trip blank		33		X		1													х						
	-													1											
Relinquished By: Thalia		Dat	e/Time	e: 13/9	9/17		1	I		I	Receiv	/ed By	<i>I</i> :	R	A	3			Date/T	ime	1	3100	015	P	2-45
Relinquished By:		Dat	e/Time	e:			0			F	Receiv	ed By	/:	X	M	m	1		Date/T	ïme					
Samples Intact: Yes No		Ter	nperat	ure:	Ambie	ent / C	hilled	)			Sampl	e Coo	ler S	ealed:	Yes/	No			Labora	atory C	Quotat	tion No:			
		Cor	nment	ts:																					

# RE: G09/2571

# Thalia Park-Ross <tparkross@netgeo.com.au>

Thu 14/09/2017 3:46 PM

To:AU.SampleReceipt.Sydney (Sydney) <AU.SampleReceipt.Sydney@sgs.com>;

Hi Emily,

The first set of photos is BH24 and second set is BH25.

Sorry for the mix up.

Regards,

Thalia Park-Ross | B Env Sci | Environmental Scientist | NETWORK GEOTECHNICS e tparkross@netgeo.com.au | p (02) 8438 0300 | m 0431 501 761 | f (02) 8438 0310 w www.netgeo.com.au | a 31 Anvil Road, Seven Hills NSW 2147

Please consider the environment before you print this email.

someone authorized to receive the addresse's email. If you have received the email in error, please notify the sender by return email, delete the email from your computer system and destroy any printed copy. There is no warranty that this email is error or virus free. It may be a private communication, Disclaimer: The information contained in this email and any attachments are confidential and are intended solely for the use of the addressee or and if so, does not represent the view of Network Geotechnics Pty. Ltd.

From: AU.SampleReceipt.Sydney (Sydney) [mailto:AU.SampleReceipt.Sydney@sgs.com] Sent: Thursday, 14 September 2017 3:39 PM To: Thalia Park-Ross Subject: G09/2571

Dear Thalia,

2 sets of BH25 received. BH24 not received. Please advise which is the right BH25. Thank You.

Regards,

Emily Yin Environment, Health & Safety Sample Receipt

SGS Australia Pty Ltd Unit 16, 33 Maddox Street Alexandria NSW 2015

Phone: +61 (0)2 8594 0400

Fax: +61 (0)2 8594 0499 E-mail: <u>au.samplereceipt.svdnev@sgs.com</u> https://outlook.office.com/owa/au.samplereceipt.sydney@sgs.com/?path=/mail/inbox



# SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	AILS	
Contact	Thalia Park-Ross	Manager	Huong Crawford	
Client	NETWORK GEOTECHNICS PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	31 Anvil Rd Seven Hills NSW 2147	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 8438 0312 / 0411 112 824	Telephone	+61 2 8594 0400	
Facsimile	02 8438 0310	Facsimile	+61 2 8594 0499	
Email	tparkross@netgeo.com.au	Email	au.environmental.sydney@sgs.com	
Project	G09-2571	Samples Received	Thu 14/9/2017	
Order Number	(Not specified)	Report Due	Thu 21/9/2017	
Samples	33	SGS Reference	SE170266	

#### SUBMISSION DETAILS

This is to confirm that 33 samples were received on Thursday 14/9/2017. Results are expected to be ready by COB Thursday 21/9/2017. Please quote SGS reference SE170266 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 13/9/2017 Yes 13.5°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 31 Soil, 2 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

#### COMMENTS -

60 soil samples have been placed on hold.

Asbestos will be sub sampled from the jar provided, as a separate bag was not supplied for analysis.

This document is issued by the Company under its General Conditions of Service accessible at www.sqs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia Australia f +61 2 8594 0499

www.sgs.com.au



CLIENT DETAILS

#### Client NETWORK GEOTECHNICS PTY LTD

Project G09-2571

		Soil	Soil	Aromatic Soil	e Metals	erable Soil		Soil
No.	Sample ID	OC Pesticides in \$	OP Pesticides in 9	PAH (Polynuclear Hydrocarbons) in	Total Recoverable in Soil/Waste	TRH (Total Recov Hydrocarbons) in	VOC's in Soil	Volatile Petroleum Hydrocarbons in S
001	BH1 0-0.1	-	-	-	7	-	-	-
002	BH2 0-0.1	29	14	26	7	10	12	8
003	BH3 0-0.1	-	-	-	7	-	-	-
004	BH4 0-0.1	-	-	-	7	-	-	-
005	BH5 0-0.1	-	-	26	7	10	12	8
006	BH5 0.9-1.0	-	-	26	7	10	12	8
007	BH5 1.4-1.5	-	-	26	7	10	12	8
008	BH6 0.4-0.5	-	-	26	7	10	12	8
009	BH6 1.4-1.5	-	-	26	7	10	12	8
010	BH7 0-0.1	-	-	26	7	10	12	8
011	BH7 0.9-1.0	-	-	26	7	10	12	8
012	BH8 0-0.1	29	14	26	7	10	12	8
013	BH9 0-0.1	29	14	26	7	10	12	8
014	BH10 0-0.1	-	-	26	-	10	12	8
015	BH11 0-0.1	29	14	26	7	10	12	8
016	BH13 0-0.1	-	-	26	7	10	12	8
017	BH14 0.4-0.5	-	-	26	7	10	12	8
018	BH15 0-0.1	29	14	-	7	-	-	-
019	BH16 0.4-0.5	-	-	26	7	10	12	8
020	BH17 0.4-0.5	29	14	-	7	-	-	-
021	BH19 0-0.1	29	14	-	7	-	-	-
022	BH20 0.9-1.0	-	-	26	7	10	12	8
023	BH22 0-0.1	-	-	-	7	-	-	-
024	BH25 0.4-0.5	29	14	-	7	-	-	_

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .



#### __ CLIENT DETAILS __

#### Client NETWORK GEOTECHNICS PTY LTD

Project G09-2571

- SUMMAR	Y OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil	
025	BH27 0-0.1	-	-	-	7	-	-	-	
026	BH29 0-0.1	29	14	-	7	-	-	-	
027	BH30 0.9-1.0	-	-	26	7	10	12	8	
028	BH130 0.9-1.0	-	-	26	7	10	12	8	
029	BH120 0.9-1.0	-	-	26	7	10	12	8	
032	Trip Spike	-	-	-	-	-	12	-	
033	Trip Blank	-	-	-	-	-	12	-	

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



# SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS __

- SUMMARY OF ANALYSIS -

#### Client NETWORK GEOTECHNICS PTY LTD

Project G09-2571

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH1 0-0.1	2	1	1
002	BH2 0-0.1	-	1	1
003	BH3 0-0.1	2	1	1
004	BH4 0-0.1	-	1	1
005	BH5 0-0.1	-	1	1
006	BH5 0.9-1.0	-	1	1
007	BH5 1.4-1.5	-	1	1
008	BH6 0.4-0.5	-	1	1
009	BH6 1.4-1.5	-	1	1
010	BH7 0-0.1	-	1	1
011	BH7 0.9-1.0	-	1	1
012	BH8 0-0.1	-	1	1
013	BH9 0-0.1	-	1	1
014	BH10 0-0.1	-	-	1
015	BH11 0-0.1	-	1	1
016	BH13 0-0.1	2	1	1
017	BH14 0.4-0.5	2	1	1
018	BH15 0-0.1	2	1	1
019	BH16 0.4-0.5	2	1	1
020	BH17 0.4-0.5	2	1	1
021	BH19 0-0.1	-	1	1
022	BH20 0.9-1.0	-	1	1
023	BH22 0-0.1	-	1	1
024	BH25 0.4-0.5	-	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



__ CLIENT DETAILS __

#### Client NETWORK GEOTECHNICS PTY LTD

Project G09-2571

_	SUMMARY	OF ANALYSIS				
	No.	Sample ID	Mercury in Soil	Moisture Content	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
	025	BH27 0-0.1	1	1	-	-
	026	BH29 0-0.1	1	1	-	-
	027	BH30 0.9-1.0	1	1	-	-
	028	BH130 0.9-1.0	1	1	-	-
	029	BH120 0.9-1.0	1	1	-	-
	030	DW1	-	-	12	8
	031	DW2	-	-	12	8
	033	Trip Blank	-	1	-	-

_ CONTINUED OVERLEAF



#### __ CLIENT DETAILS __

#### Client NETWORK GEOTECHNICS PTY LTD

Project G09-2571

- SUMMAR	Y OF ANALYSIS										
No.	Sample ID	Conductivity and TDS by Calculation - Water	Mercury (dissolved) in Water	Metals in Water (Dissolved) by ICPOES	OC Pesticides in Water	OP Pesticides in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	pH in water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	
030	DW1	1	1	1	28	13	22	1	7	10	
031	DW2	1	1	1	28	13	22	1	7	10	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



# **ANALYTICAL REPORT**





CLIENT DETAILS		LABORATORY DE	TAILS	
Contact Client Address	Thalia Park-Ross NETWORK GEOTECHNICS PTY LTD 31 Anvil Rd Seven Hills NSW 2147	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 8438 0312 / 0411 112 824	Telephone	+61 2 8594 0400	
Facsimile	02 8438 0310	Facsimile	+61 2 8594 0499	
Email	tparkross@netgeo.com.au	Email	au.environmental.sydney@sgs.com	
Project	<b>G09-2571 Additional</b>	SGS Reference	<b>SE170266A R0</b>	
Order Number	(Not specified)	Date Received	22/9/2017	
Samples	35	Date Reported	27/9/2017	

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar Beniameen Chemist

kmln

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



# Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 25/9/2017

			BH7 0.4-0.5	BH7 1.4-1.5
			SOIL - 12/9/2017	SOIL - 12/9/2017
PARAMETER	UOM	LOR	SE170266A.034	SE170266A.035
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25



# **ANALYTICAL RESULTS**

# SE170266A R0

# TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 25/9/2017

		BH7 0.4-0.5	BH7 1.4-1.5
		SOIL	SOIL
		12/9/2017	12/9/2017
UOM	LOR	SE170266A.034	SE170266A.035
mg/kg	20	<20	<20
mg/kg	45	530	<45
mg/kg	45	1300	<45
mg/kg	100	330	<100
mg/kg	25	<25	<25
mg/kg	25	<25	<25
mg/kg	90	1400	<90
mg/kg	120	750	<120
mg/kg	110	1800	<110
mg/kg	210	2100	<210
	UOM mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	UOM         LOR           mg/kg         20           mg/kg         45           mg/kg         45           mg/kg         25           mg/kg         25           mg/kg         90           mg/kg         120           mg/kg         110           mg/kg         210	BH7 0.4-0.5           SOIL           12/9/2017           UOM         LOR           mg/kg         20           mg/kg         45           mg/kg         45           mg/kg         1300           mg/kg         25           mg/kg         25           mg/kg         90           mg/kg         120           mg/kg         120           mg/kg         25           mg/kg         120           mg/kg         120           mg/kg         110           mg/kg         210



# Moisture Content [AN002] Tested: 25/9/2017

			BH7 0.4-0.5	BH7 1.4-1.5
			SOIL	SOIL
			12/9/2017	12/9/2017
PARAMETER	UOM	LOR	SE170266A.034	SE170266A.035
% Moisture	%w/w	0.5	7.4	19



METHOD	METHODOLOGY SUMMARY
×	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN433	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.



#### FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL IS I NR

Not validated. Insufficient sample for analysis. Sample listed, but not received.

UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-OU-022%20OA%20OC 20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.



# STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact Client Address	Thalia Park-Ross NETWORK GEOTECHNICS PTY LTD 31 Anvil Rd Seven Hills NSW 2147	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 8438 0312 / 0411 112 824	Telephone	+61 2 8594 0400
Facsimile	02 8438 0310	Facsimile	+61 2 8594 0499
Email	tparkross@netgeo.com.au	Email	au.environmental.sydney@sgs.com
Project	<b>G09-2571 Additional</b>	SGS Reference	<b>SE170266A R0</b>
Order Number	(Not specified)	Date Received	22 Sep 2017
Samples	35	Date Reported	27 Sep 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

TRH (Total Recoverable Hydrocarbons) in Soil

3 items

Samples clearly labelled Sample container provider Samples received in correct co Date documentation received Samples received in good orde Sample temperature upon reco Turnaround time requested	ontainers	∕es GGS 229/17@8:49am ∕es 3.5°C 'hree Days	Complete Sample co Sample co Type of do Samples r Sufficient s	documentation received oling method unts by matrix cumentation received eceived without headspace ample for analysis		Yes Ice Bricks 2 Soil Email Yes Yes	
SGS Australia Pty Ltd	Environment, Health and Sa	afety Unit 16 33	Maddox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sgs.com.au

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content	isture Content Method: ME-(AU)-[ENV]AN002							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH7 0.4-0.5	SE170266A.034	LB132927	12 Sep 2017	22 Sep 2017	26 Sep 2017	25 Sep 2017	30 Sep 2017	27 Sep 2017
BH7 1.4-1.5	SE170266A.035	LB132927	12 Sep 2017	22 Sep 2017	26 Sep 2017	25 Sep 2017	30 Sep 2017	27 Sep 2017
TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN4								ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH7 0.4-0.5	SE170266A.034	LB132926	12 Sep 2017	22 Sep 2017	26 Sep 2017	25 Sep 2017	04 Nov 2017	27 Sep 2017
BH7 1.4-1.5	SE170266A.035	LB132926	12 Sep 2017	22 Sep 2017	26 Sep 2017	25 Sep 2017	04 Nov 2017	27 Sep 2017
Volatile Petroleum Hydroca	rbons in Soil						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH7 0.4-0.5	SE170266A.034	LB132929	12 Sep 2017	22 Sep 2017	26 Sep 2017	25 Sep 2017	04 Nov 2017	27 Sep 2017
BH7 1.4-1.5	SE170266A.035	LB132929	12 Sep 2017	22 Sep 2017	26 Sep 2017	25 Sep 2017	04 Nov 2017	27 Sep 2017



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Volatile Petroleum Hydrocarbons in Soli Method: ME-(AU)-[ENV]AN433 Parameter Sample Name Units Criteria Recovery % Sample Number Bromofluorobenzene (Surrogate) BH7 0.4-0.5 SE170266A.034 % 60 - 130% 86 BH7 1.4-1.5 SE170266A.035 % 60 - 130% 94 d4-1,2-dichloroethane (Surrogate) BH7 0.4-0.5 SE170266A.034 80 % 60 - 130% BH7 1.4-1.5 SE170266A.035 % 60 - 130% 95 d8-toluene (Surrogate) BH7 0.4-0.5 SE170266A.034 % 60 - 130% 79 BH7 1.4-1.5 SE170266A.035 60 - 130% 78 % Dibromofluoromethane (Surrogate) BH7 0.4-0.5 SE170266A.034 % 60 - 130% 74 BH7 1.4-1.5 SE170266A.035 60 - 130% 86 %



# **METHOD BLANKS**

# SE170266A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### TRH (Total Recoverable Hydrocarbons) in Soil

#### Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result
LB132926.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
Volatile Petroleum Hydrocarbons in Soil				Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB132929.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	89
		d4-1,2-dichloroethane (Surrogate)	%	-	97
		d8-toluene (Surrogate)	%	-	78



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Moisture Content Method: ME-(At					od: ME-(AU)-	ENVJAN002		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE170602.008	LB132927.011	% Moisture	%w/w	0.5	5.1	4.7	51	9
SE170620.002	LB132927.033	% Moisture	%w/w	0.5	12	11	39	5

#### TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recov	RH (Total Recoverable Hydrocarbons) in Soil						Meth	od: ME-(AU)-	(ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE170617.002	LB132926.014		TRH C10-C14	mg/kg	20	0	0	200	0
			TRH C15-C28	mg/kg	45	218	183	52	17
			TRH C29-C36	mg/kg	45	328	308	44	6
			TRH C37-C40	mg/kg	100	0	0	200	0
			TRH C10-C36 Total	mg/kg	110	546	491	51	11
			TRH C10-C40 Total	mg/kg	210	432	389	81	10
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	0	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	-0.03	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	432	389	52	10
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0
SE170620.001	LB132926.022		TRH C10-C14	mg/kg	20	NVL	<20	200	0
			TRH C15-C28	mg/kg	45	NVL	<45	200	0
			TRH C29-C36	mg/kg	45	NVL	<45	200	0
			TRH C37-C40	mg/kg	100	NVL	<100	200	0
			TRH C10-C36 Total	mg/kg	110	NVL	<110	200	0
			TRH C10-C40 Total	mg/kg	210	NVL	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	NVL	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	NVL	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	NVL	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	NVL	<120	200	0
Volatile Petroleum	Hydrocarbons in Soil						Meth	od: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE170620.002	LB132929.015		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	4.0	30	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	4.5	30	5
			d8-toluene (Surrogate)	mg/kg	-	3.8	3.7	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	4.5	30	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % LB132926.002 TRH C10-C14 mg/kg 20 49 40 60 - 140 123 TRH C15-C28 mg/kg 45 45 40 60 - 140 113 TRH C29-C36 45 <45 40 60 - 140 78 mg/kg TRH F Bands 47 TRH >C10-C16 (F2) mg/kg 25 40 60 - 140 118 TRH >C16-C34 (F3) mg/kg 90 <90 40 60 - 140 98 TRH >C34-C40 (F4) 120 <120 20 60 - 140 70 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Units LOR Result Expected Criteria % Recovery % Parameter LB132929.002 TRH C6-C10 mg/kg 25 <25 24.65 60 - 140 89 TRH C6-C9 <20 60 - 140 20 23.2 72 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 4.2 5 60 - 140 83 d4-1,2-dichloroethane (Surrogate) mg/kg 4.6 5 60 - 140 92 d8-toluene (Surrogate) 4.5 5 60 - 140 91 mg/kg -4.2 Bromofluorobenzene (Surrogate) mg/kg 5 60 - 140 84 VPH F Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 7.25 60 - 140 108



# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Reco	verable Hydrocarbons				Met	hod: ME-(AU	)-[ENV]AN403		
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE170614.001	LB132926.023		TRH C10-C14	mg/kg	20	47	<20	40	118
			TRH C15-C28	mg/kg	45	190	170	40	33 (5)
			TRH C29-C36	mg/kg	45	100	89	40	28 (5)
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	330	260	-	-
			TRH C10-C40 Total	mg/kg	210	310	250	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	47	<25	40	118
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	47	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	240	250	40	-5 ⑤
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
Volatile Petroleur	m Hydrocarbons in So	il					Met	hod: ME-(AU	)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE170266A.03	LB132929.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	90
4			TRH C6-C9	mg/kg	20	<20	<20	23.2	74
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	3.7	-	79
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	4.0	-	85
			d8-toluene (Surrogate)	mg/kg	-	4.5	4.0	-	90
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	4.3	-	81
		VPH F	Benzene (F0)	mg/kg	0.1	2.1	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	130



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

22/09/2017

RE: Report Job SE170266, your reference G09-2571, order number

# Thalia Park-Ross <tparkross@netgeo.com.au>

Fri 22/09/2017 8:49 AM

to AU.SampleReceipt.Sydney (Sydney) <AU.SampleReceipt.Sydney@sgs.com>;

HI, #34 BH7 0.4-0.5

Please test samples TP7 0.4-0.5 and TP7 1.4-1.5 for TRH.

Results by Tuesday 27/9/17 please.



#35 BH7 14-1.5 Received: 22-Sep

Thalia Park-Ross | B Env Sci | Environmental Scientist | NETWORK GEOTECHNICS e tparkross@netgeo.com.au | p (02) 8438 0300 | m 0431 501 761 | f (02) 8438 0310 w <u>www.netgeo.com.au</u> | a 31 Anvil Road, Seven Hills NSW 2147

Please consider the environment before you print this email.

Disclaimer: The information contained in this email and any attachments are confidential and are intended solely for the use of the addressee or someone authorized to receive the addressee's email. If you have received the email in error, please notify the sender by return email, delete the email from your computer system and destroy any printed copy. There is no warranty that this email is error or virus free. It may be a private communication, and if so, does not represent the view of Network Geotechnics Pty. Ltd.

-----Original Message-----From: AU.Environmental.Sydney@SGS.com [mailto:AU.Environmental.Sydney@SGS.com] Sent: Thursday, 21 September 2017 5:56 PM To: Sydney Engineering; Thalia Park-Ross Subject: Report Job SE170266, your reference G09-2571, order number

Dear Thalia,

Please find attached the report for SGS job SE170266, your reference G09-2571, order number .

-IMPORTANT INFORMATION ABOUT YOUR REPORT- To align with NEPM 1999 (2013), SGS Environmental has changed the way Silica Gel Clean-up of TRH extracts is reported. TPH Silica Gel has now become TRH – Silica. NEPM 1999(2013) seeks to clarify TRH and TPH in Schedule B3, 10.2.7.

If you have any questions or concerns, please don't hesitate to contact your SGS Client Services representative.

Regards,

Natalie Grove

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the Company. Finally, the recipient should check this email and any attachments for the presence of viruses. The Company accepts no liability for any damage caused by any virus transmitted by this email. All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>

- --

Message protected by MailGuard: e-mail anti-virus, anti-spam and content filtering.http://www.mailguard.com.au





# SAMPLE RECEIPT ADVICE

- CLIENT DETAILS	S	LABORATORY DETA	ILS	
Contact	Thalia Park-Ross	Manager	Huong Crawford	
Client	NETWORK GEOTECHNICS PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	31 Anvil Rd Seven Hills NSW 2147	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 8438 0312 / 0411 112 824	Telephone	+61 2 8594 0400	
Facsimile	02 8438 0310	Facsimile	+61 2 8594 0499	
Email	tparkross@netgeo.com.au	Email	au.environmental.sydney@sgs.com	
Project	G09-2571 Additional	Samples Received	Fri 22/9/2017	
Order Number	(Not specified)	Report Due	Wed 27/9/2017	
Samples	35	SGS Reference	SE170266A	

- SUBMISSION DETAILS

This is to confirm that 35 samples were received on Friday 22/9/2017. Results are expected to be ready by COB Wednesday 27/9/2017. Please quote SGS reference SE170266A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 22/9/17@8:49am Yes 13.5°C Three Days Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 2 Soil Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia f Australia f

lia t +61 2 8594 0400 lia f +61 2 8594 0499

www.sgs.com.au



# SAMPLE RECEIPT ADVICE

#### __ CLIENT DETAILS _

#### Client NETWORK GEOTECHNICS PTY LTD

Project G09-2571 Additional

 SUMMARY	OF ANALYSIS				
No.	Sample ID	Moisture Content	TRH (Total Recoverable Hydrocarbons) in Soil	Volatile Petroleum Hydrocarbons in Soil	
034	BH7 0.4-0.5	1	10	8	
035	BH7 1.4-1.5	1	10	8	
		1			

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .